
Properties and Mechanisms of
Self-Organizing MANET and P2P Systems

BARTOSZ BISKUPSKI

Trinity College Dublin

JIM DOWLING

Swedish Institute of Computer Science

and

JAN SACHA

Trinity College Dublin

Despite the recent appearance of self-organizing distributed systems for Mobile Ad Hoc Networks
(MANETs) and Peer-to-Peer (P2P) networks, specific theoretical aspects of both their properties
and the mechanisms used to establish those properties have been largely overlooked. This has
left many researchers confused as to what constitutes a self-organizing distributed system and
without a vocabulary with which to discuss aspects of these systems. This article introduces an
agent-based model of self-organizing MANET and P2P systems and shows how it is realised in
three existing network systems. The model is based on concepts such as partial views, evaluation
functions, system utility, feedback and decay. We review the three network systems, AntHocNet,
SAMPLE, and Freenet, and show how they can achieve high scalability, robustness and adaptabil-
ity to unpredictable changes in their environment, by using self-organizing mechanisms similar
to those found in nature. They are designed to improve their operation in a dynamic, heteroge-
neous environment, enabling them to often demonstrate superior performance to state of the art
distributed systems. This article is also addressed at researchers interested in gaining a general
understanding of different mechanisms and properties of self-organization in distributed systems.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; C.2.4
[Computer-Communication Networks]: Distributed Systems—Distributed applications; H.1.1
[Models and Principles]: Systems and Information Theory—General systems theory; H.3.3 [In-
formation Storage and Retrieval]: Information Search and Retrieval—Clustering; information
filtering; relevance feedback; search process; selection process; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Coherence and coordination; intelligent agents; multiagent systems

General Terms: Algorithms, Design, Management, Performance, Reliability

The work described in this article was partly supported by the “Information Society Technology”
Programme of the Commission of the European Union under research contract IST-507953 (DBE).
Authors’ addresses: B. Biskupski and J. Sacha, Trinity College Dublin, Dublin, Ireland; email:
{biskupski, jsacha}@cs.tcd.ie; J. Dowling, Swedish Institute of Computer Science, Kista, Sweden;
email: jim.dowling@sics.se.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1556-4665/2007/03-ART1 $5.00. DOI 10.1145/1216895.1216896 http://doi.acm.org/
10.1145/1216895.1216896

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

2 • B. Biskupski et al.

Additional Key Words and Phrases: Adaptive systems, Complex systems, MANET, peer-to-peer,
Self-organisation

ACM Reference Format:
Biskupski, B., Dowling J., and Sacha, J. 2007. Properties and mechanisms of self-organizing
MANET and P2P systems. ACM Trans. Autonom. Adapt. Syst. 2, 1, Article 1 (March 2007), 34
pages DOI = 10.1145/1216895.1216896 http://doi.acm.org/10.1145/1216895.1216896.

1. INTRODUCTION

Designers of distributed systems have recently turned to decentralized mecha-
nisms to build large-scale systems for dynamic network environments, such as
Mobile Ad Hoc Networks (MANETs) and Peer-to-Peer (P2P) networks, as tra-
ditional approaches to system design based on global knowledge or strict con-
sensus among entities are no longer viable [Babaoglu et al. 2006; Dowling et al.
2005]. However, the complexity of decentralized control increases rapidly with
system size and dynamism, and researchers have turned to self-organization
as a guiding principle to construct such systems. Self-organization offers the
promise of providing new ways to build distributed systems from massive
numbers of low-cost hosts that interact and adapt to produce properties such
as self-management capabilities, robustness and adaptability to a dynamic
environment.

The properties and constraints on mechanisms that are required for a sys-
tem to be described as self-organizing with emergent properties have been,
in our opinion, most clearly defined in the field of biology by Camazine et al.
[2001] as “a process in which pattern at the global level of a system emerges
from the numerous interactions among lower-level components of the system.
Moreover, the rules specifying the interactions between the system’s compo-
nents are executed using only local information, without reference to the global
pattern.” This definition captures important aspects of self-organization such
as autonomous components that take decisions using only local information,
and how interactions between components cause system properties to emerge.
However, this definition does not say anything about how the system or its
constituent components interact with the system’s environment, or how inter-
action with an external environment can be used to guide self-organization to
produce macro-level structures [Prigogine and Stengers 1984].

There has been extensive research on self-organization in biological, social
and physical systems [Camazine et al. 2001; Prigogine and Stengers 1984;
Heylighen 2001; Albert and Barabási 2002], producing a common set of con-
cepts with which we can discuss these systems. We use these concepts to pro-
pose an agent-based model of self-organizing MANET and P2P systems and in-
form a review of three selected network systems. We use this model to describe
the properties of the reviewed systems and the mechanisms used to establish
those properties. As part of our model, we identify several design constraints
and guidelines for engineering self-organizing applications in the target net-
work environments. While we only analyze self-organizing MANET and P2P
systems in this article, we believe that our model can be extended to a general
class of self-organizing distributed systems. Our model and review contrast with

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 3

previous research that examined the application of theories of self-organization
to algorithms and computer applications, such as in Serugendo et al. [2004],
Collier and Taylor [2004], and Babaoglu et al. [2006], in that we evaluate how
self-organization is used in these systems to improve their operation by adapt-
ing to a dynamic environment.

The rest of the article is organized as follows: In Section 2, we motivate
the use of self-organization for building distributed systems by discussing the
limits of existing consensus-based techniques, for increasing systems size and
dynamism. In Section 3, we provide brief reviews of the systems AntHocNet,
SAMPLE and Freenet that we will use in the rest of the article to show how our
model is realized. In Section 4, we describe the model of autonomous agents,
their partial view of the system and the influence of the environment on the
system design. In Section 5, we formalize how self-organizing MANET and P2P
systems, and the reviewed systems in particular, can improve desired system
properties, such as network throughput, by adapting their structure and behav-
ior to their application, network and host environments. Finally, we conclude
and give some directions for future work.

2. MOTIVATION FOR SELF-ORGANIZATION IN DISTRIBUTED SYSTEMS

Traditionally, distributed systems designers have used techniques such as cen-
tralized state, group communication protocols [Hayden 1997], dynamic software
architectures [Garlan and Schmerl 2002], tuple spaces [Cabri et al. 2000], and
interaction protocols [FIPA 2002] to coordinate the behavior of system compo-
nents to produce desirable system behavior. These techniques all rely on some
type of global knowledge that can be characterized as a synchronized view
among a set of participants on the value of some shared state.

In decentralized systems, global knowledge of the system includes the local
state and local environment of every component in the system. Components
can coordinate their behavior to improve desirable properties of the system, if
they are able to reach consensus (agreement) on the state of the system and
its environment. A number of different consensus models have been developed
that provide components with different levels of consistency on the state of the
system and its environment at any instant in time. Strict consensus models,
based on components viewing a total ordering of the updates to the system
state, provide components with strong consistency guarantees on the state of
the system, but they do not scale for a large number of participants due to
the number of messages that need to be sent between them. For many appli-
cations, strict consensus requirements can be loosened and techniques such
as virtual synchrony [Birman and Joseph 1987], based on causal ordering of
system events, can be used, enabling systems to scale better. However, Van
Renesse et al. [2003] state that: “traditional consensus protocols [...] have costs
linear in system size [...]. With as few as a few hundred participants, such a
solution would break down.” More recently, eventual consistency models have
become widely adopted [Tanenbaum and van Steen 2001], such as those based
on system-wide gossiping [Jelasity et al. 2003], and gossiping within partitions
in a statically partitioned system [Van Renesse et al. 2003].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

4 • B. Biskupski et al.

The general trend in designing larger distributed systems has been to de-
velop consensus protocols that reduce the number of messages that need to be
delivered to all components in the system to synchronize on a shared view, but
at the cost of lessening consistency guarantees. However, the aforementioned
consistency models still provide a system-wide view and require that messages
be eventually sent to all participants, even if those messages are not relevant
to all of them. For dynamic environments, such as P2P networks and MANETs,
two costs associated with this approach increase with system size: the time re-
quired to propagate a changed view to all participants and the frequency with
which the view is updated. As systems in these environments scale, they have
increased node churn rates [Rhea et al. 2004], link state changes, and more ap-
plication data to process [Sen and Wong 2004]. Other decentralized techniques
such as self-stabilizing algorithms [Dijkstra 1974] define global system states
(correct, safe, and erroneous states) and components attempt to stabilize the
system within a bounded number of steps, that is, eventually achieve consensus
that the system is in a correct state [Gustavsson and Andler 2002]. Examples of
self-stabilizing algorithms include routing algorithms [Gouda 2005], for exam-
ple, Routing Information Protocol (RIP) and Open Shortest Path First (OSPF),
but these algorithms break down in highly dynamic environments [Perkins
2001].

In effect, as systems increase in size and dynamism it becomes increasingly
difficult for systems based on either eventual consistency or self-stabilizing
algorithms to adapt and improve their operation to an unpredictable environ-
ment. However, in large-scale systems operating in dynamic environments, lo-
calized groups of components are still able to establish weak consensus on the
state of a relatively small part of the system. Techniques for establishing local-
ized consensus can reduce the amount of information propagated in the systems,
compared to system-wide gossiping, without the need to statically partition or
group components using global knowledge.

3. A REVIEW OF SELF-ORGANIZING MANET AND P2P SYSTEMS

We focus our review of self-organizing distributed systems on systems from
MANET and P2P domains. MANET and P2P systems exhibit many common
properties that justify describing them in one article. Common properties in-
clude a dynamic network environment with high levels of node churn, changing
network link quality and variation in the amount of resources nodes contribute
to the system. These properties have led to the development of techniques that
allow decentralized coordination of entities and their continuous adaptation to
a changing network environment.

The criteria we used to select systems for this review includes systems that:
consist of autonomous interacting entities; have no use of global knowledge (al-
lowing for the bootstrap problem in P2P systems); have a dynamic environment;
and adapt to changes in their environment to improve some desirable system
property. P2P systems that do not meet these criteria, but have stimulated in-
terest in self-organization in distributed systems, include: systems based on
relatively static structures that do not evolve as the environment changes,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 5

such as Distributed Hash Tables (DHTs) [Stoica et al. 2001; Ratnasamy et al.
2001; Rowstron and Druschel 2001; Manku et al. 2003]; super-peer architec-
tures based on manual or centralized super-peer election approaches [Yang
and Garcia-Molina 2003; Zhao et al. 2002]; peer-to-peer multicast systems
based on centralised multicast tree management algorithms [Padmanabhan
and Sripanidkulchai 2002]; and hierarchically partitioned gossiping systems
(such as Astrolabe [Van Renesse et al. 2003]). Many of the existing MANET rout-
ing protocols, which can be characterized as reactive, zone-based and cluster-
based [Perkins 2001], do not meet our criteria. In the related area of sensor
networks, existing systems that describe themselves as self-organizing incorpo-
rate centralized entities such as cluster-heads or sink nodes, and are therefore
not considered here [Akyildiz et al. 2002].

While much of the discussion on self-organization and our later model is
applicable to distributed systems, in general, we restrict our review to three
systems in P2P and MANET domains that meet our criteria, as they consist
of decentralized, autonomous entities that operate in a dynamic environment,
adapt their operation to changes in their environment, and have emergent
properties, such as localized consensus between entities. The reviewed systems
are diverse as they operate in different network environments (MANET and
P2P), use different algorithms and adapt to different properties of these envi-
ronments. Other existing systems that meet our criteria, but are not reviewed,
include the SG-1 self-organizing protocol for construction and maintenance of
super-peer overlays [Montresor 2004], the T-MAN gossip-based protocol for the
topology management [Jelasity and Babaoglu 2006] and the AntNet mobile-
agent-based routing protocol [Di Caro and Dorigo 1998]. SG-1 and T-MAN are
not reviewed as their self-organizing mechanisms aim at achieving system-
wide eventual consistency, while we are more interested in localised consistency
mechanisms. AntNet is similar to MANET routing protocols reviewed in this
article.

3.1 Background on the Reviewed Systems

MANETs are a class of wireless network where mobile nodes interact and
communicate with each other in an ad-hoc manner. MANETs lack any fixed
infrastructure, and in routing protocols for MANETs all nodes have a routing
agent that forwards packets over multiple hops, hopefully towards their desti-
nation. P2P systems refer to a general class of wide area networked systems
that use distributed resources to provide some service in a purely decentralized
manner.

The network environments of MANETs and P2P systems have different
underlying capabilities that can be used to design self-organizing behavior.
MANETs provide network broadcast functionality and promiscuous listening
on the shared network medium, allowing the easy propagation of information
between nearby hosts and the discovery of new nodes in a system. In con-
trast, P2P systems are typically built as IP overlay networks that define some
communication abstraction over the IP network. IP overlay networks offer no
broadcast or promiscuous listening capabilities, and centralized or well-known

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

6 • B. Biskupski et al.

name services are typically used to overcome the bootstrap problem. However,
P2P systems enable an agent to directly communicate with any other agent,
allowing systems to adapt their topologies arbitrarily. MANETs, in some ways,
are a more challenging network environment as no single agent can be used
globally to coordinate system behavior.

The reviewed systems use approximate optimization algorithms to solve opti-
mal path problems (paths to destination nodes in the MANET routing and paths
to files in the P2P system). The algorithms used are approximate optimization
algorithms as they only attempt to provide a good enough solution to a prob-
lem in reasonable time, whereas optimal algorithms strive for convergence on
a global optimal solution [Blum and Roli 2003]. However, the reviewed systems
deal with problems not typically addressed by optimization algorithms, includ-
ing: the concurrent solution to many different optimization problems, the loss
of solution parts by agents leaving the system, the discovery of new solutions
as agents join the system, and solution cost generation using measurements
taken at the agents’ local network environments.

We discuss the reviewed systems as examples of multi-agent systems, where
an agent is an autonomous entity that is “situated in some environment, and
that is capable of autonomous actions in this environment in order to meet
its design objectives” [Wooldridge 2002; Jennings et al. 1998], following the
Wooldridge and Jennings definition.

3.2 AntHocNet: A Self-Organizing Routing Protocol for MANETs Based on Ant
Colony Optimization

AntHocNet [Di Caro et al. 2005] is a self-organizing routing protocol for
MANETs. AntHocNet belongs to a group of network routing protocols based
on the Ant Colony Optimisation (ACO) meta-heuristic [Dorigo and Di Caro
1999], which in turn was inspired by the observed behavior of ants foraging
for food in ant colonies. Systems based on ACO are modeled as a finite set of
nodes (components), connections between the nodes and a population of ants
wandering between the nodes and laying a volatile substance called pheromone
that evaporates over time. Ants wander randomly in the absence of pheromone
trails at a component, whereas if pheromone trails are present on connections,
ants preferentially traverse the connection with higher pheromone intensity.
Ants can add pheromone to a connection as they traverse it, generally adding
more pheromone if the path is shorter or of higher quality. This form of indirect
communication between ants about the path quality is called stigmergy. When
ants follow the simple behavior described above, the colony as a whole, with
high probability, can solve the problem of finding the shortest path from a set of
paths between a pair of nodes. This is achieved by many ants concurrently and
randomly exploring their environment, and laying pheromone more frequently
and in higher amounts on shorter paths, which in turn attracts more ants to
those paths and creates a positive feedback loop of pheromone accumulation.
The majority of initially random ants converge onto the shortest paths with
the highest pheromone concentration. These paths, called pheromone trails,
are emergent structures generated by ants exploring the environment and

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 7

indirectly interacting with each other. The pheromone trails evaporate over
time, allowing the colony to explore new paths over time.

The ACO meta-heuristic was successfully applied to many routing al-
gorithms where separate packets, called ant packets, are proactively sent
into the network to continuously sample possible paths and update routing
(pheromone) tables at nodes in the system. Ant-based routing protocols in-
clude ABC [Schoonderwoerd et al. 1996] and AntNet [Di Caro and Dorigo 1998]
that were designed for wired networks, as well as the more recent AntHocNet
for MANETs. Ant-based routing algorithms are suitable for MANETs due to
their decentralized nature, high robustness to node failures, load balancing and
adaptability to highly dynamic environments. However, the use of only proac-
tive ant packets to discover optimal routes led to problems in previous work
on applying ACO to MANET routing in PERA [Baras and Mehta 2003]. It has
been shown that reactive protocols for MANETs, such as Ad Hoc On-Demand
Distance Vector routing (AODV) [Perkins and Royer 1999], demonstrate better
performance in MANETs, mainly due to the high network dynamism [Perkins
2001].

AntHocNet adapted the proactive nature of the ACO meta-heuristic to build
a hybrid protocol, which combines reactive route set up with proactive route
maintenance. Each node maintains a routing table, where for each known desti-
nation, an entry consists of a vector of real-valued elements, called pheromone
values, with one element for each neighbor. A neighbor is defined as a node
within wireless communication range. A pheromone value is an estimation of
the quality of the route to the destination over a particular neighbor. Pheromone
values are continuously updated according to the path quality values calculated
by reactive and proactive ants. When a node wishes to send a data packet to a
destination that is not in the local routing table, a reactive ant packet is sent to
discover and set up an initial path to the destination. The reactive ant packet is
broadcast, hence, all nodes within wireless broadcast range, that is, the node’s
neighbors, receive it and if their routing tables contain the destination, they for-
ward the reactive ant packet to the next hop with a probability proportional to
its pheromone value. If the destination is unknown again, a node rebroadcasts
the reactive ant packet as before. This procedure is repeated until a reactive
ant packet reaches the destination, whereupon it is converted to a backward
ant packet that retraces its path to the source along the same path, updating
pheromone values in routing tables. Routing tables are updated using a com-
bination of the locally sensed size of the packet queue and the estimated time
required to route a packet to the destination. Pheromone values are updated
gradually, biasing their values towards the newly computed ones. If the back-
ward ant cannot be delivered to the sending node, for instance due to node
movements, the sending node reaches its maximum number of broadcasts and
the maximum waiting time for the backward ant, assumes that the destination
is unreachable, and discards all buffered packets to this destination.

Once the paths are set up by possibly different reactive ants that reached
the destination, data packets can be routed to the destination (see Figure 1).
Data packets are unicast probabilistically in a similar manner to the reactive
ant packet, but with a lower probability of selecting suboptimal paths, that is,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

8 • B. Biskupski et al.

Source Dest.

Reactive and
Proactive exploration

of routing paths
Exploratory

ants

Source Dest.

Source

Source

Source

Source

Fig. 1. Emergent “trails” (or paths) to a popular destination in AntHocNet.

every node that receives a data packet selects the next hop with a probability
proportional to the next hop’s pheromone value. When a data session has been
established between nodes, the source node periodically sends out a proactive
forward ant packet at a rate of one for every few data packets. The proactive
forward ant is probabilistically unicast to the next hop, using the same formula
as reactive forward ants, but there is also a small probability of a broadcast in-
stead of a unicast in order to discover new nodes and paths in the network. As
in the case of reactive ants, on the way back to the source node, proactive ants
update pheromone values along the path with the quality values collected by
forward ants. In addition to these proactive routing features, nodes periodically
broadcast the pheromone values in their routing tables to all their neighbors.
This enables the diffusion of pheromone values throughout the network, inde-
pendent of ant activities. Furthermore, nodes use periodic broadcast to notify
each other that they are alive.

In simulations based on Qualnet [Scalable Network Technologies, Inc. 2003],
the AntHocNet algorithm has been shown to be superior to a state of the art
MANET routing protocol, AODV, in terms of packet delivery ratio, average end-
to-end delay and average jitter, whereas it is less efficient in terms of routing
overhead since it requires many control messages to be sent. AntHocNet pro-
duces superior performance to AODV because feedback between different ant
packets on route quality produces localized consensus between nodes, in the
form of pheromone trails, on the best routes in the system, enabling nodes to
share in the work of exploration the network environment for better routes.
In contrast, AODV is a reactive protocol that does not learn route quality. The
performance of AntHocNet demonstrates the potential for self-organizing ap-
proaches to building distributed systems in MANETs.

3.3 SAMPLE: A Self-Organizing Routing Protocol for MANETs Based on
Collaborative Reinforcement Learning

Similar to AntHocNet, SAMPLE [Curran and Dowling 2005] is a self-organizing
routing protocol for MANETs. Its design is based on Collaborative Reinforce-
ment Learning (CRL) [Dowling et al. 2005], an extension to Reinforcement
Learning (RL) [Sutton and Barto 1998] with support for online multi-agent
learning. Collaborative Reinforcement Learning (CRL) is designed to coordi-
nate the solution to discrete optimisation problems (DOPs) in a multi-agent sys-
tem in order to optimize desirable system properties, such as system throughput
or robustness. A CRL system is a decentralized system of partially connected
RL agents, where any agent can potentially initiate a DOP that is solved by
some (possibly different) agent in the system. Each agent uses a local model

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 9

Advertisements and
probabilistic routing

Source Destination Source Destination

Source

Source
Source

Source

Advertisements Advertisements

Fig. 2. Emergent stable routes to a popular destination in SAMPLE.

of both its environment and its neighbors to attempt to minimize the cost in
solving a DOP. A DOP is solved by an agent either by executing an action to
solve the DOP locally or, if the estimated cost is lower, an action to delegate
the DOP’s solution to a neighbor. Agents improve their local model using both
evaluative feedback on the success of past actions to solve the DOP, and by ac-
quiring environmental feedback from the agent’s application, host and network
environment, for example, using monitoring subsystems as found in autonomic
systems [Dowling 2004]. Agents also provide one another with collaborative
feedback about their estimated cost of solving different DOPs, enabling agents
to coordinate the solution to DOPs and also optimize desirable system proper-
ties.

SAMPLE is based on CRL and for each different known destination agents
model a routing decision as solving the DOP of finding the (neighboring) agent
with the lowest estimated cost of routing a data packet to that destination.
SAMPLE is a purely reactive protocol, in which routing tables with estimated
costs for different destinations are updated when users provide data packets to
be routed in the network. In contrast to AntHocNet, SAMPLE does not employ
separate control packets for route discovery and maintenance but, instead, con-
trol data is attached to user data packets, thus eliminating the routing overhead
introduced by proactive ant packets in AntHocNet.

In SAMPLE, data packets are routed using both the estimated route costs
from neighbors (the next hop) to a destination and the estimated connection
costs to those neighbors, where an agent’s neighbors are the set of nodes within
wireless communication range. Agents acquire estimated costs to destinations
from their neighbors using advertisement of estimated route costs. The next
hop for a packet is selected based on the sum of the advertised costs of each
neighbor and the estimated connection cost of using a network link to that
neighbor. Connection costs are calculated using the probability of a packet being
successfully sent over the network link, based on a recent sample of packets
sent over that link.

Agents advertise their routing costs reactively by piggy-backing estimated
route costs to both the packet’s source and destination nodes inside each data
packet. Neighboring nodes receive all data packets sent over the shared wireless
communication channel by promiscuously listening to all data packets, and
use the advertised route costs to update and improve the quality of their local
routing tables and connection cost models (see Figure 2). In order to remove
stale routing information from the routing tables, SAMPLE uses route decay,
where estimated costs in routing tables for non-advertised routes grow steadily
higher over time, hence, gradually eliminating these routes from consideration

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

10 • B. Biskupski et al.

from routing decisions. This is similar to the idea of pheromone trail evaporation
used in ACO [Dorigo and Di Caro 1999], and it means that agents adapt to
recent routing traffic, thus preventing convergence on stale routes.

SAMPLE supports implicit exploration of the network for better routes by
routing packets probabilistically. SAMPLE also includes a discovery action,
implemented as a broadcast packet, to find new nodes and routes in the network.
The discovery action is always executed when there is no routing entry available
for a destination. However, as Boltzmann action selection [Sutton and Barto
1998] is used to select actions, discovery actions can also be executed, with low
probability, during packet forwarding to attempt to discover new nodes, and
possibly more optimal routes, for example, to adapt to network congestion by
discovering uncongested routes.

SAMPLE has been specifically designed for a type of MANET scenario where
Internet access is provided to mobile nodes in a metropolitan area. In this type
of network, a majority of traffic terminates at the few servers in the network
that provide the Internet access; there also are a group of stable, fixed nodes
with stable routes to the servers. Experimental results of SAMPLE in the NS-2
network simulator [Breslau et al. 2000] showed that more popular traffic des-
tinations have higher quality routes, since routes to these nodes are more ex-
plored and advertised. An emergent property of traffic flowing over the stable
routes to the servers can be observed as more traffic flows from mobile nodes to
the servers. This emergent property results from many agents using feedback
from their local environment and feedback from neighbors to collectively adapt
their routing behavior to favour stable network links. In the presence of stable
links, high congestion and a high level of agent dynamism, SAMPLE has been
shown to have significantly better network throughput and packet delivery per-
formance than both AODV and Dynamic Source Routing (DSR) [Johnson et al.
2001] protocols [Curran and Dowling 2005; Dowling et al. 2005].

3.4 Freenet: A Self-Organizing Overlay P2P File Storage and Retrieval System

Freenet [Clarke et al. 2000] is a self-organizing P2P system that allows for
publication, replication, and retrieval of data, while protecting the anonymity
of both authors and readers. Freenet can be seen as a distributed storage ap-
plication in which every peer contributes some storage space to the system,
and which supports two operations: data insert and data retrieval. Deletion of
data is implicit, that is, items that are not accessed for a period of time are
removed automatically. Freenet is a P2P system where the global structure is
not predetermined, but emerges in a bottom-up manner. Each peer in the sys-
tem reactively updates its connections to neighbors using a local routing table
adaptation algorithm. A peer’s routing table contains addresses of neighboring
peers and the data keys it believes they hold. Data keys are used to identify data
items; these location-independent identifiers allow for the insertion, removal
and discovery of data items in the system. In the current Freenet implementa-
tion [Clarke et al. 2000], keys are obtained by applying the 160-bit SHA-1 hash
function to a data item. Every peer maintains a local, encrypted data reposi-
tory where other peers can insert a data item indexed by a key. Peers know only

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 11

Hill Climbing
Search

& Backtracking

Data Holder

Key Location
470 B

A

E

C

D
B

2 3

4
5

7

8

6

Key Location
470 B
500 C

A

E

C

D
B

Lookup(490)

Success

Key Location
470 B

500 C

490 C

A

E

C

D
B

Lookup(495)

Success
Hill Climbing

Search
& Backtracking

Lookup(500)

Fig. 3. Emergent key clustering in Freenet agents.

the identifiers of the locally stored data, which is sufficient for answering user
requests.

Freenet’s routing mechanism is especially important from the perspective of
self-organization. User requests are routed from one peer to another using a
hill-climbing algorithm with backtracking [Russell and Norvig 2003] to decide
the location of the next hop. When a peer receives a query, it first checks its own
repository, and if it finds matching data, sends it back along the request path.
Otherwise, the peer forwards the request to the peer in its routing table with
the closest key (determined by lexicographic distance) to the one requested,
that is, hill-climbing search. If a peer sends a query to a recipient that is al-
ready on the request path, the message is bounced back and the peer tries to
use the next-closest key instead. If a peer runs out of candidates to try, it re-
ports failure back to its predecessor on the path, which then tries its next best
choice, and so on, that is, backtracking. In order to limit resource usage, each
request is given a hops-to-live limit that is decremented at each peer and when
it reaches zero, the request fails. If a request is ultimately successful, it returns
the data back to the upstream requester, where the data is cached locally, and a
new entry is added in the requester’s routing table associating the actual data
source with the requested key. This way, subsequent requests for the same
key will be immediately satisfied from the local cache, whereas requests for
“similar” keys will be forwarded to the previously successful data source (see
Figure 3).

The presented routing table adaptation mechanism leads to large improve-
ments in routing performance over time. Peers use feedback from successful
user requests to adapt their routing tables to specialise in handling clusters of
similar keys (determined again by lexicographic distance) [Zhang et al. 2004].
Since each time a peer succeeds in handling a request, it is entered in another
peer’s routing table, this increases the probability that it will receive requests
for keys that are similar to the key it handled. As the peer gains more experi-
ence in handling queries for those keys, it will successfully answer them more
often and, in turn, get asked about them more often, in a kind of positive feed-
back loop. Similarly, peers’ repositories will specialize in storing clusters of data
items with similar keys. The creation of new entries in the routing table, after
successfully answered requests, is the crucial aspect of the neighbor selection
algorithm that leads to the emergent property of clustering of network connec-
tions to peers with popular data items. However, one problem with Freenet

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

12 • B. Biskupski et al.

is that multiple clusters can form in the network containing similar keys,
leading to performance problems when the hill-climbing search algorithm
causes a request to search clusters (hill tops) that do not contain the data item
(as it may be in a different cluster containing similar keys), and ultimately time
out. The emergent clusters are localised, not global structures. In general, there
is a lack of published material on the performance of Freenet, mainly due to the
difficulty in performing experiments due to the strong support for anonymity
in Freenet. However, experiments that simulated Freenet’s performance sug-
gest that its performance is acceptable for highly replicated data, but poor for
difficult-to-find data [Zhang et al. 2004].

4. AGENT MODEL

The review and analysis of AntHocNet, SAMPLE and Freenet show that these
systems have many structural features and mechanisms in common. One essen-
tial component of these self-organizing distributed systems is the autonomous
agent that cooperatively solves distributed problems.

In this article, the reviewed systems are considered multi-agent systems
[Wooldridge and Jennings 1995; Wooldridge 2002; Jennings et al. 1998; Ferber
1999], as they meet general characteristics of multiagent systems [Sycara
1998]: agents have incomplete information or capabilities for solving the prob-
lem; there is no system global control; data is decentralized; and computation
is asynchronous. The agents in the reviewed systems respond in a timely fash-
ion to changes in their local environments, proactively and reactively exchange
messages with one another, maintain models of their local environment, and
take actions in order to satisfy both individual agent problem solving and sys-
tem improvement goals. Of the three general classes of interactions in multi-
agent systems: cooperation, coordination, and negotiation; the agents in the
reviewed systems demonstrate cooperation in routing packets and finding files
and coordination in adapting and improving collective routing behavior in a
dynamic environment. There is no negotiation between agents since our agents
are not self-interested.

This section describes the environment in MANET and P2P systems and how
agents maintain partial views of the system in order to improve performance
and adapt to a changing environment.

4.1 Local Agent Environment

An agent in a distributed system executes in a local environment consisting
of its local host, operating system, network, and local applications or users
interacting with the agent. A local environment is defined as everything that
is external to the agent and the system (other agents are not external to the
system), that has both a direct impact on its operation and can be directly sensed
or manipulated by the agent. Thus, from the agent’s point of view, users and
external applications are part of the agent’s local environment (see Figure 4).
An agent has interfaces to its local environment that determine the nature and
scope of what the agent can sense and manipulate in its local environment.
Agents may also be mobile, changing their local environment.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 13

Agent

Partial

View

Direct Link in

Communication

Media

Application

Environment

Network

Environment

Local Environment

 Agent

Partial

View

Application

Environment

Network

Environment

Local Environment

<<neighbour>>

Fig. 4. Two neighboring agents and their local environments. The local environment of a single
agent consists of applications that provide it with local data, a host and network infrastructure
enabling message passing between agents.

Most environments in which self-organizing distributed systems operate are
inaccessible, nondeterministic, and dynamic. In the particular case of MANET
and P2P network environments, the state of network links is inaccessible in
practice as network links must be tested to establish whether they are working
(an expensive operation); routing actions are nondeterministic, having unpre-
dictable outcomes; and the network state is dynamic, as external factors such
as wireless interference and network congestion affect link quality.

Formally, every agent i in the system operates in a local environment, where
the local environment’s state at time t is denoted as

ei
t ∈ E,

where E is the set of all possible local environment states, and i ∈ Nt , with Nt

defining the set of agents in the system at time t. The total system environment
et ∈ E comprises the union of the local environments (potentially overlapping)
of all agents in the system at time t

et =
⋃

i∈Nt

ei
t ,

where E denotes the set of all possible system environment states.
The state of the agent’s local environments is total with respect to the agent

and independent of the state of the agent. The local agent environment can be
modified by actions of the agent itself and actions of other agents operating in
it. However, there is an uncertainty in the outcome of agent actions on the state
of the environment due to a lack of knowledge of other agent actions as well as
nondeterminism and dynamism of the environments.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

14 • B. Biskupski et al.

4.2 Agent Partial View

In highly distributed systems, no agent possesses a global view of the entire
system and its environment as this is not feasible in any system with high com-
plexity (see Section 2). Similarly, an agent’s view of its local environment can be
limited and inaccurate due to inaccessibility, nondeterminism and dynamism.
Consequently, an agent typically maintains a partial view that encompasses
a model of the system and of its local environment. An agent’s partial view
is constructed using information received from other agents and information
observed from its own local environment.

In order to solve distributed problems, a partial view should contain models
for estimating the state of relevant, inaccessible parts of the system or its envi-
ronment. These models allow agents to take actions based on the state of their
local partial view, without the need to first communicate with other agents,
which introduces scalability problems and is generally not feasible in real-time
environments. However, if agents are to provide good solutions to distributed
problems, they must coordinate their behavior and this can be achieved by the
convergence of agents’ partial views. Agents typically adapt and converge their
partial views using feedback from their local environment and feedback from
other agents. The adaptation and convergence of partial views allows agents to
coordinate their action selection and to improve problem solutions. The agent’s
partial view includes:

(1) a neighborhood
(2) a model of the local environment
(3) partial knowledge from neighboring agents
(4) estimated knowledge over groups of agents or the whole system (that can

be deduced from 1, 2 and 3) that we call localized system properties.

An agent’s internal state consists of all components in the agent’s partial view,
that is, its set of neighbors (neighborhood), the model of its local environment,
partial knowledge from neighboring agents and localized system properties.
The internal state of agent i at time t is denoted as

si
t ∈ I, (1)

where I is the set of all possible internal states of the agent i ∈ Nt . It should be
noted here that while si

t includes an agent’s model of its local environment at
time t, ei

t represents the actual state of the environment at time t. An agent’s
model of the local environment can deviate from the state of the local envi-
ronment, and should be kept accurate by frequent feedback from the local
environment.

The following subsections describe each element of the agent’s partial view
(internal state), and relate the reviewed systems to this model, which is sum-
marized in Table I.

4.2.1 Neighborhood. In decentralized systems, an agent has a neighbor-
hood, that we define as the set of agents with which it can communicate (i.e.,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 15

Table I. Comparison of Agent Partial Views in AntHocNet, SAMPLE and Freenet

AntHocNet SAMPLE Freenet

Neighborhood agents in wireless
communication
range

agents in wireless
communication
range

most recently used
agents

Local Environment
Model

estimated packet
transmission time
over local links and
packet queue size

estimated probability
of successful packet
transmission over
local links

local data storage and
estimated
connection quality
for each neighbor

Partial Knowledge
from Neighbors

costs of routes to
destinations
calculated by
neighbors

costs of routes to
destinations
calculated by
neighbors

keys that each
neighbor can locate

Localized System
Properties

estimated best next
hop for destinations

estimated best next
hop for destinations

estimated best next
hop for finding files

send messages) directly at a particular moment in time. An agent may be aware
of other agents outside its neighborhood, for example, an agent may know the
address of some remote agent and communicate with it through other agents
in a multi-hop manner; but if it cannot directly communicate with them, they
do not belong to its neighborhood. The neighborhood is dynamic with respect
to its size and membership, and it must be managed and updated over time. In
systems based solely on stigmergy, such as AntNet [Di Caro and Dorigo 1998],
where communication between agents is indirect and mediated by the envi-
ronment, an agent’s neighborhood is considered to be empty, by our definition.
In AntHocNet, however, we consider the routing programs on the hosts to be
agents and the reactive and proactive ants to be messages. AntHocNet’s rout-
ing programs are autonomous programs that actively maintain a view of their
neighboring nodes.

The agent, in order to interact with other agents and hence participate in the
system, needs to initialise its own neighborhood by discovering other agents in
the system and informing them about its existence. This process is often called
bootstrapping or discovery [Milojicic et al. 2002; Sycara et al. 2003]. Once the
agent discovers a connected agent in the system, it can find other agents and
build its own neighborhood. However, as systems grow in size, agents are not
able to maintain and constantly update information about all potential neigh-
boring agents. Agents often refine their neighborhood to some limited number
of agents by evaluating the relative “fitness” of their neighbors and potential
neighbors. The agent’s neighborhood needs to be also continuously updated, by
agents removing neighbors that leave the system. Agents leaving the system
might notify neighbors before they leave, but a notification mechanism is not
sufficient in the case of arbitrary failures. The only indication to other agents
of such a failure is absence of any activity at the failed agent.

In AntHocNet, the agent’s neighborhood consists of all agents in the agent’s
wireless broadcast range. These are the only agents that it can directly commu-
nicate with. It can reach other agents only in a multi-hop manner. However, the
agent may not know about all its direct neighbors. The agent’s knowledge about

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

16 • B. Biskupski et al.

neighbors is reflected by its routing table, where each entry corresponds to a
direct neighbor. Wireless broadcast and promiscuous listening enable agents to
learn about neighbours and bootstrap their routing tables. The routing table
entries need to be continuously updated by inserting neighbors that join the
system and removing neighbors that fail or leave the system. For failure de-
tection, AntHocNet uses a common heartbeat mechanism [Huhns et al. 2002],
where hello messages are periodically sent to neighbors to determine their
availability. Unresponsive neighbors are removed from routing tables.

Similarly in SAMPLE, the agent’s neighborhood consists of all agents within
the agent’s wireless broadcast range, and it is maintained in the agent’s routing
table. Again, wireless broadcast and promiscuous listening are used to boot-
strap an agent’s routing tables. In contrast to AntHocNet, SAMPLE uses a
decay mechanism for agent failure detection, where the routing table entries
(corresponding to a neighbor) are degraded over time, in the absence of receiving
messages from neighbors. If a routing table entry corresponding to a neighbor
reaches some “staleness” threshold, the neighbor is removed from the agent’s
routing table.

In Freenet, the agent’s neighborhood consists of a limited number of agents
that have been most recently used for routing. The Freenet protocol does not
specify a bootstrap mechanism, but Freenet implementations support cen-
tralised seed nodes that can be initially added as neighbors. Once an agent
makes an initial connection and issues requests for data, it learns about other
agents that successfully answer requests and inserts them in its neighborhood.
A maximum neighborhood size prevents unbounded neighborhood growth, set
at 250 neighbors in simulation [Clarke et al. 2002], and when the agent com-
pletes a subsequent user request, the Least Recently Used (LRU) entry in the
routing table (i.e., a neighbor) is removed to make way for the new entry. This
way, assuming enough user requests are satisfied by neighbors over time, in-
active neighbors are eventually removed from the neighborhood.

In other systems, agents sometimes attempt to optimize their set of neigh-
bors using some evaluation function that measures the relative “fitness” of their
neighbours and potential neighbors. Distributed Hash Table P2P systems se-
lect neighbors based on their unique identifiers [Stoica et al. 2001; Rowstron
and Druschel 2001; Rhea et al. 2004] and additionally refine them using some
proximity metrics such as latency. In super-peer networks, agents adapt their
neighbors based on agent resources and capabilities (e.g., high bandwidth, low
latency, large storage space or high uptime) [Yang and Garcia-Molina 2003].
In multi-agent systems, where agents may have different functionality, agents
select neighbors based on their capabilities to solving required tasks [Decker
et al. 1997].

4.2.2 Local Environment Model. In dynamic network environments, ob-
serving the state of local network links is an expensive operation. The re-
viewed MANET systems overcome this problem by maintaining a model of
their network links, that they use to make decisions about the probability
of transmission over a link succeeding, see Table I. Similarly, aspects of the
agent’s application and host environments can be modeled to help agents

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 17

estimate their state. Local environment models are stored in the agent’s partial
view.

Local environment models are typically estimators for aspects of the envi-
ronment that are relevant to the agent for distributed problem solving or for
improving behavior. As agents often take decisions based on the state of the
local models, instead of the state of the actual environment, the models need to
be continuously updated by gathering information from the local environment.
However, local models are not sufficient for agents to take actions that improve
system performance. For instance, a routing agent could select a locally opti-
mal action of forwarding a network packet to a neighbor that has the lowest
latency, but this locally optimal decision may not be globally optimal if the se-
lected neighbor has only poor quality paths to the destination. Thus, the agent
needs to learn about remote regions of the environment through the exchange
of partial views with other agents.

In AntHocNet, an agent builds a local model of its network environment by
monitoring the size of its local queue of packets that are to be sent at the MAC
layer, and by measuring the average time between the arrival of a packet at the
MAC layer and the time needed for successful transmission. This information,
together with estimated route costs to destinations received from neighbors, is
used by the agent to estimate the total cost of routing to known destinations.

In SAMPLE, an agent builds a local model of its network environment by
storing a sliding window of the observed number of successful transmissions
to failed transmissions to each of its neighbors, at the MAC layer. The sliding
window, for each neighbor, is used to estimate the probability of a successful
packet transmission over the link to its neighbor. This model is then combined
with advertised route costs to destination to estimate the total route cost of
delivering a packet to a destination.

Freenet’s representation of the environment contains information about the
locally available data items and their keys as well as the reachability of the
neighboring hosts. The information about the locally available data items is
propagated to neighboring agents, enabling them to locate these data items. Re-
cently, in other P2P systems, estimated models of network links have been used
to demonstrate improved system performance for DHT-based systems [Rhea
et al. 2004].

4.2.3 Partial Knowledge from Neighbors. Agents that solve distributed
problems need to acquire knowledge about remote regions of the system (beside
their own local knowledge) from agents that explore these regions. The prob-
lems that agents solve are known as tasks, and are defined by some specification
[Wooldridge 2000]. Agents cooperate in task solution and each agent typically
has a model of the estimated costs of solving tasks by each neighbor. Agents
use local models to make decisions about task delegation to a neighbor, since
the cost of communicating with neighbors before deciding on the best neighbor
for a task is often prohibitive, especially for increasing numbers of neighbors.
The first version of Gnutella is a well-known example of how flooding neighbors
with queries, without using a knowledge from other agents, can severely impact
system scalability [Ripeanu et al. 2002].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

18 • B. Biskupski et al.

In self-organizing distributed systems, information contained in partial
views is shared among agents to promote convergence between agent partial
views. There are different methods for sharing knowledge, but the basic de-
sign choice is between proactive and reactive mechanisms [Wooldridge 2002].
Proactive knowledge exchange can be initiated by agents at any time, typically
periodically, whereas reactive knowledge exchange is only triggered when some
external source (such as the agent’s environment) introduces new information
to the system. The choice of proactive and/or reactive mechanisms should take
into consideration the expected rate of interactions between agents due to the
external environment.

The sharing of knowledge introduces a trust problem into the system, and
the model of self-organization presented in this article assumes that agents
interactions are trusted and cooperative, as is the case in the reviewed systems.
Agents are trusted if they behave according to the system’s rules and do not
try to disrupt the correct functioning of the system. Agents cooperate in that
they contribute their own resources (e.g., bandwidth, storage space) in order to
increase the system utility, rather than maximise their individual utility. The
issue of support for trust models is considered outside the scope of this article
and has been addressed elsewhere [Axelrod 1997; Rapoport and Chammah
1965; Cahill et al. 2003; Cohen 2003].

In AntHocNet, the knowledge that neighbors exchange consists of the esti-
mated costs of routing to selected destinations. AntHocNet uses both reactive
and proactive mechanisms for sharing this knowledge, including reactive ants
to setup routing paths, and proactive ants to periodically sample routing paths
during data traffic.

Similarly, in SAMPLE, neighbors exchange estimated costs of routes to des-
tinations. However, only reactive mechanisms for exchanging routing knowl-
edge are used during both route setup and normal routing operation. Rout-
ing cost and node availability information is piggybacked in routing packets,
which neighboring agents promiscuously receive and use to adapt their routing
tables.

In Freenet, the knowledge that agents exchange is the agents ability to locate
particular keys. A reactive mechanism for knowledge exchange is used; when
a data item is successfully located, agents along the request path update their
local sets of keys to reflect that they can now locate that item.

Other mechanisms seen in different multi-agent systems for propagating
and adapting partial views of agents include proactive gossiping protocols in
Newscast [Jelasity et al. 2003] and Astrolabe [Van Renesse et al. 2003], reactive
event-based notification in Chord [Stoica et al. 2001] and Pastry [Rowstron and
Druschel 2001], stigmergy mechanisms in AntNet [Di Caro and Dorigo 1998],
and knowledge and information exchange languages for MAS [Finin et al. 1994;
FIPA 2002].

4.2.4 Localized System Properties. From the combination of local environ-
ment models and knowledge received from neighboring agents, an agent can
reason about localized properties of the system, such as a next hop on an op-
timal routing path to a desired destination. These estimated properties enable

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 19

coordinated agent actions that are globally near-optimal and result in the sys-
tem behaving as a coherent whole.

In AntHocNet and SAMPLE, routing costs are aggregated over the set of
agents in a routing path, and thus make up a property of the system that is
localized to a group of agents. Agents use the search algorithms ACO and CRL,
respectively, to make routing decisions to destinations in remote parts of the
system. These search algorithms can generate good global decisions by basing
their decisions on both local environment models and the estimated cost of
routing via a neighbor to a known destination.

In Freenet, when an agent needs to locate a data item that is not available
locally, it selects a neighbor that specialises in locating the closest key. As agents
that provide similar keys tend to cluster, the local knowledge of key clustering
helps solve the global problem of finding good paths to a destination.

5. SYSTEM MODEL

One of the main goals when engineering self-organizing systems is the im-
provement of desired system properties, given the state of the system and its
environment [Collier and Taylor 2004]. Many different properties of distributed
systems can be recast as problems that can be quantified and subsequently im-
proved or optimised. Examples in the reviewed systems include maximising
routing performance, minimising packet loss, and maximizing the clustering of
similar data items. Related concepts for evaluating the performance of multi-
agent and distributed systems include Wooldridge’s system utility [Wooldridge
2000, 2002], Wolpert’s world utility that is used to rate the collective behavior of
agents in his Collective Intelligence (COIN) model [Wolpert and Tumer 1999],
and Babaoglu’s figure of merit (FOM) that is used to rate the sensitivity of the
system to a dynamic environment [Babaoglu et al. 2006].

In this section, we introduce a formal model of self-organization in dis-
tributed systems as the adaptation of the system to improve desired sys-
tem properties in the current system environment. No implementation or
formal validation of the model is provided, but we show how the model is
realized in the reviewed systems. Our approach is based on models proposed
for multi-agent systems [Wooldridge 2000, 2002; Genesereth and Nilsson 1987].
Our model should be useful in aiding system designers understand how tech-
niques such as feedback models and evaluation functions can be applied to build
self-organizing distributed systems with desirable system properties.

5.1 System State

The set of all agents’ internal states comprises the system state. The system
state at time t is denoted as st ,

st = (
si
t

)
i∈Nt

∈ S,

where Nt is the set of agents in the system at time t, si
t ∈ I are the internal

states of each agent, as defined in Formula 1, and S is a set of all possible system
states.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

20 • B. Biskupski et al.

Similar to Wooldridge’s multi-agent model [Wooldridge 2002], we can model
system behavior in a given environment as a sequence of pairs of the system
state and the total environment state (i.e., sequence over S × E),

(s0, e0) → (s1, e1) → (s2, e2) → (s3, e3) → · · ·
Each system state transition is caused by transitions of individual agent in-
ternal states, which are, in turn, caused by agent action execution, receiving
feedback from neighboring agents and the local environment, and decay mecha-
nisms. We introduce all these concepts in the rest of Section 5. The transitions of
the environment state are caused by agents modifying their local environments
and dynamism of the environment, see Section 4.1.

5.2 Problem Statement: Improving System Utility in a Dynamic Environment

Desired system properties in a multi-agent system can be optimized if they can
be recast as approximate optimization problems that can be subsequently max-
imized or minimised. Formally, we introduce an abstract system utility function
that measures the quality of some desired system property for a particular state
of a system and the system’s environment

util : S × E �−→ R.

We can also say that the utility function measures how well the system state
is matched to the environment (where higher values are preferable). self-
organizing systems should be engineered to adapt towards states that increase
the system utility. We define the set of optimal system states for a given envi-
ronment e as

S�(e) = {s ∈ S : util (s, e) = max
s′∈S

util (s′, e)}.

Hence, at time t, the set of optimal system states is S�
t = S�(et). Given system

behavior as a transition of system and environment states, we say that the
system state converges toward the optimal states if

lim
t→∞

(
util (st , et) − max

s′∈S
util (s′, et)

) = 0.

In order for agents to adapt to an optimal state, they require a relatively stable
environment; an unrealistic assumption in MANET and P2P networks. For
systems in dynamic environments, their goal is to reach good enough, near-
optimal states in reasonable time. Systems have to trade off their speed of
adaptivity for their ability to find near-optimal states.

The presented utility function gives some high-level intuition in how a self-
organizing system behaves, however, it does not provide any insights on how
to realise this behavior. This is because agents have only limited view on the
system and do not have access to the system utility function. In the reviewed
systems, the utility function could measure the quality of routing tables, that
is, how precisely routing tables reflect the current environmental conditions.
In optimal system states, S�

t , the routing tables should enable all agents to
select routing paths for packets (or requests) such that they optimize some

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 21

Destination

Localised Emergent Consensus between

Similarly Coloured Nodes on Best
 Next Hop to Destination

Wireless Communication Ranges
of Next Hops and Destination

Next Hop
Next Hop

Fig. 5. In SAMPLE and AntHocNet subgroups of agents can establish consensus on the best Next
Hop to a Destination. Here, identically colored agents agree on the best next hop, while the larger
agents with two colors are agents on the “best” path to a destination.

routing metric, such as maximizing network throughput or packet delivery ratio
(Figure 5).

The challenge in building systems that improve system utility in a dynamic
environment is to coordinate agent actions that are based only on the agents’
local states and to adapt agent states to a changing environment. This is difficult
for the following reasons:

—uncertainty in the actions and state of other agents in the system
—uncertainty in the level of system utility
—uncertainty in the state of the environment
—uncertainty in the effect of actions on the environment.

The first three uncertainties result directly from the agent’s lack of global
system knowledge. The last two uncertainties are caused by inaccessibility,
dynamism and nondeterminism of the environment.

In the following sections, we show a model for how agents in self-organizing
systems select their local actions based on local state, and how they use feedback
and decay to adapt their local state to their environment and neighbors. We then
discuss, using our model, how systems can increase their utility in a dynamic
environment.

5.3 Localized Consensus

Some form of consensus on the state of the system and the environment, be-
tween a subset or all of the system’s agents, is required in order to coordinate
agent behavior, and, consequently, improve desired system properties [Parunak
et al. 2005]. Agents proactively or reactively exchange selected parts of their
state, promoting convergence between neighboring agents on their view of
the system, thus enabling a form of consensus to emerge. Agents share the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

22 • B. Biskupski et al.

minimal, but complete, state necessary to cooperate and solve their distributed
problems, for example, routing agents only share best estimated routing dis-
tances to destinations rather than all estimated distances using all of their
neighbors.

The model of consensus we are interested in is not system-wide, but local-
ized to groups of agents in the system, and there is no management of group
membership. Agents can adapt their state to become closer to one another using
feedback mechanisms, introduced later in Section 5.5. We start defining con-
sensus between a set of agents by first introducing an abstract distance metric
that measures the difference between internal states of two agents:

dist : I × I �−→ R.

A system is said to have reached strict global consensus at time t when the
distance between any two agent states in the system is zero:

∀i, j∈Nt dist
(
si
t , s j

t
) = 0,

where Nt is the set of all agents in the system at time t. However, this form
of consensus is not possible as it would require that all agents possess syn-
chronized global knowledge of the system. Thus, agents only strive to achieve
localized forms of consensus between smaller groups of agents N ′

t ⊂ Nt . This
consensus is also weak, as agent states are not necessarily strictly consistent;
their distance is limited by some constant, ε:

∀i, j∈N ′
t
dist

(
si
t , s j

t
)

< ε.

The consensus between localized groups of agents in self-organizing systems is
often eventual (see eventual consistency models in Section 2), meaning that in
a stable environment agents’ internal states converge over time:

lim
t→∞ max

i, j∈N ′
t

dist
(
si
t , s j

t
) = 0.

In the reviewed systems, a form of localized weak consensus emerges between
the agents. However, due to the dynamism of the environment and nonlinear
adaptations produced by interagent feedback, see Section 5.5.1, it is mathemat-
ically intractable to derive all the values of i, j ∈ N ′

t and ε using an analyti-
cal approach. Nevertheless, given a reasonably accurate model of the system’s
environment, these values can be observed empirically through experimenta-
tion. It can be shown that statistically, within a given confidence interval, that
agents maintain localized weak consensus on some state of the system.

In AntHocNet, proactive ants improve consensus between agents that lie on
their paths between the source and destination. Since ants are forwarded with
higher probability to agents situated on the high-quality paths, more effort
is dedicated to improve consensus on high-quality paths, which are also more
likely to be exploited for routing. Furthermore, routing information is gradually
diffused between agents by periodic broadcasts. Through these mechanisms,
localized groups of routing agents, delimited by their physical proximity, can
establish weak consensus on the best quality routes to popular destinations in
the network, given a stable network environment.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 23

In SAMPLE, localized weak consensus between agents is achieved through
advertisements and promiscuous listening. When a data packet is sent by an
agent, all neighboring agents (i.e., agents within the wireless communication
range) receive information about the cost of the path from that agent to the
packet’s original source and destination (see Figure 5). Furthermore, routing
costs are advertised through broadcasts. Advertisements can propagate over
multiple hops in the system when neighbors adapt to advertisements and re-
advertise their new paths. Since popular destinations are advertised more often,
better consensus emerges on the cost of paths leading to them, and consequently
lower cost paths are discovered to popular destinations.

In Freenet, the key clustering mechanisms group together agents special-
ising in locating and storing data items associated with similar keys. Agents
located within the same clusters have similar routing tables and store similar
keys, and hence, are close to each other in terms of the dist metric and reach a
localized weak consensus. The consensus can be seen to emerge between agent
routing tables on the best agents to use for different keys. For each successful
request, agents on the request path improve their consensus on how to locate
the requested key. These agents also improve consensus on the location of other
data items that have similar keys since agents specialize in routing to clusters
of similar keys.

5.4 Action Selection

Agents need some model for selecting actions that both solves agent-level tasks
and strives to improve system utility in a given environment. Individual agent
behavior can be abstractly defined by three functions that describe how agents
evaluate their available actions in the current state, select an action, and ex-
ecute the selected action. First, we introduce an eval function that is used by
agents to estimate the utility of the possible actions, given the current agent
state

eval : Ac × I �−→ R,

where Ac is the set of all actions available at the agent. In systems where agents
share a common goal, as in the systems reviewed in this article, the evaluation
function should be designed in such a way that action utility calculated by
eval corresponds to the action’s estimated effect on system utility. This is a
challenging problem that we return to in Section 5.6.

Subsequently, an action is selected based on the output of the evaluation
function. Since agents only have a partial view of the system, estimations of
action utility may be inaccurate, as the local state may not accurately model
the current system and environment state. Thus, an agent needs to trade-off
the exploitation of the knowledge of its current state (executing locally higher
utility actions) with exploration for new states (executing lower utility actions).
Formally, we define an action α ∈ Ac executed by an agent i at time t as ex-
ploratory if:

eval
(
α, si

t

)
< max

α′∈Ac
eval

(
α′, si

t

)
.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

24 • B. Biskupski et al.

Otherwise, the action selected exploits knowledge in the current local state if

eval
(
α, si

t

) = max
α′∈Ac

eval
(
α′, si

t

)
.

This leads us to define a probabilistic model for action selection that allows for
the selection of both exploitative and exploratory actions as

select : I �−→ PAc

where PAc is the set of all probability distributions over the set of actions. Thus,
the select function returns a discrete probability distribution PAc ∈ PAc, such
that

∑
α∈Ac PAc(α | si

t) = 1. Typically, such a probability distribution is designed
so there is a higher probability that actions with higher estimated utility are
selected, over actions with lower estimated utility. An action selected from the
probability distribution is executed by the agent, where an execute function is
defined as

execute : I × E × Ac �−→ I. (2)

The execute function captures how an action may involve sensing the agent’s
local environment, and how it results in a new agent state.

In the reviewed systems, AntHocNet agents evaluate actions, including data
routing and sending a reactive or proactive ant, based on the availability of
routes and estimated route costs for neighboring agents. If routes are available
to a destination, routing actions for data traffic are selected using a probabilis-
tic model that is tuned in experiments to favors better routes. If no route is
available, an action to send a reactive forward ant is selected that uses a prob-
abilistic model to discover a route that is tuned to favor exploration. Actions to
send proactive ants for route maintenance are triggered after n data routing
actions.

SAMPLE uses CRL to evaluate agent actions based on the local environment
model, the availability of routes and the estimated route costs for neighboring
agents. If routes are available to a destination, SAMPLE selects routing actions
using a probabilistic policy called Boltzmann action selection. If no route is
available, a broadcast action is selected that floods the network to discover a
route.

Freenet evaluates actions based on the distance of the required key to each
neighbors’ advertised keys. In Freenet, actions are limited to unicast routing.
Freenet uses a deterministic, hill climbing search algorithm when handling
user requests for keys. Initially, agents have no information about keys associ-
ated with the neighboring agents, thus routing involves much exploration that
gradually reduces as agents specialize in locating clusters of similar keys.

5.5 Agent Adaptation

Agent adaptation involves the updating of agents’ internal states, and conse-
quently their behavior, as a result of action execution (Formula 2), receiving
feedback from neighboring agents and the local environment, and decay mech-
anisms. Agents encode information from local and remote parts of the system
locally in their state or in the system topology by reconfiguring their neigh-
borhoods. Adaptation can help reduce the uncertainties that prevent agents

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 25

from selecting actions that improve system utility. We describe here how agents
adapt their behavior using two mechanisms: feedback and decay.

5.5.1 Feedback. Feedback is a form of communication of information be-
tween agents in a self-organizing system about the state of a part of the system
or its environment. It is a mechanism that enables groups of agents to reach
some form of consensus on their state and on their environment.

Two possible sources of feedback for an agent are its local environment and
its neighbors. Agents use feedback from their local environments and neighbors
to update their local state. Formally, we can define feedback from an agent j
to an agent i produced at time t as a feedback message, f ∈ F , that contains a
part of agent j ’s state

f ⊆ s j
t ∈ I.

Feedback messages are generated by agent actions

feedback : I × E × Ac �−→ F
where F is the set of all possible feedback messages, I is the set of all possible
agent states, E is the set of all possible local agent environment states and Ac is
the set of all possible agent actions. A feedback message for an agent can also be
produced by the agent’s local environment. It is then represented as a subset of
the state of the local environment in which agent i operates, f ⊆ ei

t ∈ E. Agents
that receive a feedback message from the local environment or neighboring
agents, use it to adapt their local state that we formally represent by an adapt
function:

adapt : I × F �−→ I.

Feedback is the main mechanism used for the adaptation of agent behavior;
by adapting an agent’s state, feedback can modify an agent’s action selection
policy. Environmental feedback enables an agent to learn about the state of its
local environment, and agents that share the same local environment (such as
agents deployed on the same host) can share the same local environment model.
Interagent feedback (feedback between agents) is generated by the proactive or
reactive sharing of selected agent state and enables the convergence of agents’
state. Agents should not share their entire partial view, but only information
relevant to neighbors, for example, information common to problems they are
solving.

Two variants of feedback are possible in dynamical systems: positive and
negative feedback that, respectively, amplify or decrease the selection of actions
by agents. Formally, we say that positive feedback f ∈ F amplifies the use of
action α ∈ Ac by agent i if the updated agent state, si

t , improves the utility of
that action:

eval
(
α, adapt

(
si
t , f

))
∑

α′∈Ac eval
(
α′, adapt

(
si
t , f

)) >
eval

(
α, si

t

)
∑

α′∈Ac eval
(
α′, si

t
) .

Similarly, negative feedback can be defined for an action as one that decreases
the probability of an action being selected. Positive feedback loops can form at

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

26 • B. Biskupski et al.

the system-level, where some agent adapts its local state and produces feed-
back to neighboring agents, which in turn adapt themselves, affecting their
neighbors, often resulting in system-wide adaptations.

Interagent feedback, whether positive or negative, improves consensus be-
tween agents. When agent j sends a feedback message, f , to agent i and agent
i adapts its local state, the distance between the internal states of agents i and
j decreases

dist
(
adapt

(
si
t , f

)
, s j

t
)

< dist
(
si
t , s j

t
)
.

Similarly, when agent i adapts its state si to the feedback received from the
environment, si becomes more consistent with ei (which can be formalized by
introducing appropriate metrics).

In the reviewed MANET systems, interagent feedback consists of estimated
route costs for destinations. Feedback is considered positive or negative, accord-
ing to whether it increases or decreases the cost of a particular routing path in
the agent’s routing table. Positive feedback processes cause more data packets
to be attracted to a path, resulting in more feedback being generated for that
path. Negative feedback, on the other hand, decreases the attractiveness of
the routing path and consequently reduces the amount of feedback generated
for the path (see Figure 6(a)). Only local adaptations that change an agent’s
best estimated route cost to a destination are further propagated to neighbors.
As such, cascading updates in a system are often the result of positive feed-
back processes where new better paths are discovered. The presence of positive
and negative feedback loops leads to nonlinear system behavior, where small
causes can have large effects, making the systems less amenable to formal
analysis. Nonlinear interactions between agents can be observed in SAMPLE
and AntHocNet when an agent on a stable path or trail to a popular destina-
tion unexpectedly fails. This relatively small event (from a system perspective)
can trigger a feedback process whereby the routing policies of a large num-
ber of agents are adapted until agents converge on a new route to the popular
destination.

In AntHocNet, interagent feedback about estimated route costs is carried by
reactive and proactive ants. The local network environment provides feedback
to agents about the size of local packet queues. The implementation of the ACO
algorithm uses both forms of feedback to adapt routing table entries.

In SAMPLE, interagent feedback is provided by unicast and multicast pack-
ets that carry route cost advertisements and that agents receive by promis-
cuously listening. The local network environment provides feedback about the
success or failure of packet transmissions. The CRL algorithm uses inter-agent
and environmental feedback to adapt the routing table entries and the local
network link models, respectively.

In Freenet, feedback is supplied to agents when they handle a user request.
Agents receive feedback on whether the request has been successfully handled.
If it has, the agent associates the requested key with the agent that fulfilled the
request in its routing table. This adaptation of agent routing tables causes more
requests for similar keys to be sent to this agent, triggering a positive feedback
loop (see Figure 6(b)). The positive feedback loop causes agents to specialize in

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 27

agent stochastically

selected for

routing / sampling

Positive Feedback

Negative Feedback

agent more likely to
be selected for

routing / sampling

quality of the
path via agent

improved

agent less likely to
be selected for

routing / sampling

quality of the
path via agent

decreased

(a) Feedback in SAMPLE and AntHocNet

agent

receives a
request

agent receives

more requests
for similar keys

Positive Feedback

Negative Feedback

request succeeds,

agent added to
more routing tables

agent less likely
to receive

requests for
similar keys

request fails,
agent may be

dropped from
routing table

(b) Feedback in Freenet

Fig. 6. Feedback in the reviewed systems.

both routing for clusters of similar keys and, as agents cache each reply locally,
storing clusters of data with similar keys. However, Freenet’s performance suf-
fers due to excessive positive feedback, where agents over-specialise in clusters
of keys. Excessive clustering adversely affects the efficiency of Freenet’s request
routing performance for requests that are not in the agent’s local neighborhood
[Zhang et al. 2004]. Zhang improved Freenet’s neighbor reconfiguration algo-
rithm by allowing for probabilistic selection of long-range random links. Ran-
dom links act as negative feedback on excessive clustering. Zhang showed how
this negative feedback can help stabilise an agent’s routing table and improve
system performance for request searching.

5.5.2 Decay. One of the limitations of the feedback model is that when
agents leave the system, their state may be still included in neighboring agents’
partial views. Failed agents cannot produce feedback messages to inform their
neighbors of their departure from the system. A similar problem can be found
when an agent stops receiving feedback from the local environment; this may
lead to divergence between the state of the agent’s local environment model
and its real environment. To handle these cases, agents can decay their partial
view over time. Decay models are useful in ensuring that agents’ partial views
do not diverge too much from the actual state of the system’s environment, as
they require a constant flow of feedback from the environment and other agents
to maintain stable agent states. Decay can be described by a function that each
agent applies to its partial view:

decay : I �−→ I.

In AntHocNet, pheromone values in route tables decay over time in a pro-
cess known as evaporation. In the absence of routing traffic, route costs to
neighbors are gradually increased. However, routes are only removed when
a neighbor’s availability changes, and this is monitored by proactive hello
messages.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

28 • B. Biskupski et al.

In SAMPLE, decay is a form of time-driven, single-agent negative feed-
back, that is, it does not cascade to other agents or produce feedback loops.
Agents decay the estimated route costs in the routing tables at every discrete
time unit, that is, they increase the cost of routing actions. In the absence of
routing packets from the application environment, the stable paths that are
formed through positive feedback processes gradually degrade in quality un-
til the routing actions for those stable paths are removed from routing table
entries.

In contrast, Freenet’s decay model is not based on updating agent state at
discrete time steps. Routing tables are decayed when user requests are fulfilled;
the decay model causes the LRU entry in its routing table to be removed. How-
ever, as decay is not based on elapsed time, the absence of user requests can
lead to stale routing tables that can contain entries for agents that have left
the system.

5.6 Discussion

The presented model describes the self-organizing behavior of MANET and P2P
systems, as improving system utility through agents using local information to
adapt to a dynamic network environment. A summary of the model is presented
in Figure 7. It explains how agent-level mechanisms such as inter-agent feed-
back, environmental feedback, decay and agent adaptation enable agents to
coordinate their behavior to improve system utility. Agents in our model use
only information from their local state, without reference to any global knowl-
edge, to improve system utility.

We believe that our model is also applicable to understanding and building
self-organizing multi-agent systems, in general. It allows us to ask questions
such as: given a group of agents, an environment representation, and a problem
to solve, how do we construct:

—feedback and decay functions to allow an agent maintain an accurate model
of its local environment

—feedback and decay functions to allow an agent to propagate relevant state
changes to relevant neighbors

—evaluation functions that enable agents to select globally good actions based
only on their local states, improve a system’s utility, and effectively solve a
distributed problem.

The main challenges in building self-organizing distributed systems using our
model are the design of: environmental feedback models that match an agent’s
internal models to real environment; inter-agent feedback models that promote
localized consensus between agents; and action evaluation functions that im-
prove system utility in a stable environment. For local environment feedback,
information gathered from the agent’s local environment must somehow be
transformed into an efficient representation, stored in the agent’s partial view.
For interagent feedback models, distributed problems must somehow be rep-
resented in a form where less than strict consensus between partial views is
acceptable for applications.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 29

Properties

—Decentralization: The lack of a single entity with complete, system-wide knowledge about
the state of the system and the environment, or an entity that controls and coordinates
the behavior of the entire system. The system consists of interacting, autonomous agents
with partial views of the system.

—Localized consensus: Aproperty of decentralized systems where localized groups of agents
maintain weakly consistent views on the state of the system and their local environments.
Agents establish localized consensus in order to coordinate their actions. Strict global
consensus cannot be maintained in a decentralized system of any reasonable complexity.

—Utility optimisation: The goal of the system is to continuously optimize its structure and
behavior in a dynamic environment, in order to improve (ideally maximize) the value of
a system utility function or to satisfy certain utility constraints.

Mechanisms

—Partial view : Every autonomous agent maintains a partial view of the system that includes
its neighborhood, a model of its local environment, partial knowledge of the system ac-
quired from neighbors, and estimated properties of localized parts of the system.

—Feedback : A form of communication in self-organizing MANET and P2P systems that
results from agents taking actions. Environmental feedback allows an agent to update its
internal model of the local environment. Interagent feedback enables a group of agents
to establish localized consensus on the state of the system and the system’s environment.
Positive feedback increases the probability of the action that caused the feedback being
selected, while negative feedback decreases the likelihood of this action’s selection.

—Decay: A mechanism that degrades the quality of information stored in an agent’s partial
view until the information becomes stale and is removed from the partial view.

—Evaluation function: A heuristic that allows an agent to estimate the utility of available
actions, given the current agent state. The evaluation function should be engineered in
such a way that when an agent selects actions that maximize its local evaluation function,
the system optimises its global utility.

—Action selection: The algorithm performed by an agent in order to select the next action
for execution. Exploitative action selection policies favor higher utility actions, while
exploratory policies may select suboptimal actions that enable the discovery of previously
unknown states and actions.

Fig. 7. Summary of the Properties and Mechanisms of Self-Organizing MANET and P2P systems.

The relationship between action evaluation functions and system utility is a
particularly challenging problem. In cooperative systems, where agents share
a common goal (as in the reviewed systems), the evaluation function can be
designed as a utility function. However, if there is no feedback between agents
or feedback between agents and the environment, agents have high uncertainty
as to the utility of available actions due to their lack of global knowledge or
the state of the environment. Probabilistic action selection is one approach
that enables agents to explore their environment to find better solutions to
problems (helping improve the system utility). However, models where agents
only use exploratory actions to improve their estimation of the action utility
often decrease system utility, due to exploratory actions increasing usage of the
system’s resources. Feedback models, in contrast, are more efficient at allowing
agents learn about the state of the system and the environment, as a feedback
message can be generated by a single agent executing an action, but received by
many agents. Feedback enables the collective, asynchronous improvement in

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

30 • B. Biskupski et al.

the quality of partial views at many agents, helping improve agents’ ability to
estimate the utility of actions. The convergence of agent state through feedback
can help agents to coordinate their behavior to improve system utility, provided
that local environmental models accurately model the real environment.

The use of feedback to improve system utility can be observed in congestion
scenarios in the MANET systems. When the level of traffic over a path reaches
a state of congestion (decreased system utility), agents with a new routing prob-
lem avoid using the congested path through feedback from the local environ-
ment model and feedback from remote agents. The agent does not need to route
packets on the congested path in order to discover its state of congestion, which
would decrease system utility. Instead, feedback enables a localized group of
agents to reach consensus that the path is congested, and agents then take
actions using local state to avoid that path. In this way, evaluation functions
that use state models updated by environmental and interagent feedback, can
be based on approximate optimisation algorithms that maximise the agent’s
local utility, while simultaneously improving system utility.

In the reviewed MANET systems, designers favoured experimentation and
simulation to evaluate system utility. This is due to the difficulty in formally
validating convergence properties of multi-agent systems in dynamic environ-
ments with non-linear system behavior [Wolf et al. 2005; Babaoglu et al. 2006].
Experiments require a realistic model of the system’s real environment, pro-
vided by the network simulators used by SAMPLE and AntHocNet, where sys-
tem utility values such as network throughput and packet delivery ratios can
be measured over different network setups and experimental runs.

6. CONCLUSIONS AND FUTURE WORK

In this article, we presented an abstract agent-based model of self-organizing
MANET and P2P systems and showed how it is realized in the reviewed sys-
tems. The model describes how agent behavior, based on local state models of
the environment and neighbors, can be adapted to improve overall system be-
havior, through feedback generated from a dynamic environment. Agents con-
tinuously use feedback from neighboring agents and their local environments
to improve the quality of their partial view of the system, allowing localized
groups of agents’ partial views to converge, thereby enabling coordinated agent
behavior. Coordinated agent behavior, in turn, can help improve desired system
properties. In general, feedback models can reduce the need for agents to take
actions to explore the system’s environment and can reduce the amount of mes-
sage passing required to coordinate agent behavior; both helping to increase
system utility. The agent-level mechanisms that our model covers are action
evaluation functions, action selection policies, feedback, and decay.

We believe that our model can be used to inform the construction of dis-
tributed systems with improved performance in dynamic environments. For
example, in existing state of the art DHT-based P2P networks, system structure
is determined by node identifiers, rather than the state of the environment. We
have been investigating a Gradient topology where system structure captures
information about node uptime and performance characteristics [Sacha et al.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 31

2006]. We are also using our model to help inform other research in building
P2P multicast streaming protocols that adapt to heterogeneity in their network
environment [Biskupski et al. 2006], and self-organizing traffic lights that op-
timise vehicular traffic [Cunningham et al. 2006].

ACKNOWLEDGMENTS

We would like to thank Giovanna Di Marzo Serugendo and the anonymous
reviewers for their valuable comments and suggestions to improve the quality
of this article.

REFERENCES

AKYILDIZ, I., SU, W., SANKARASUBRAMANIAM, Y., AND CAYIRCI, E. 2002. Wireless sensor networks: a
survey. Comput. Netw. 38, 4 (Mar.), 393–422.

ALBERT, R. AND BARABÁSI, A.-L. 2002. Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 1 (Jan.), 47–97.

AXELROD, R. 1997. The Complexity of Cooperation. Princeton University Press, Princeton, NJ.
BABAOGLU, O., CANRIGHT, G., DEUTSCH, A., DI CARO, G., DUCATELLE, F., GAMBARDELLA, L., GANGULY, N.,

JELASITY, M., MONTEMANNI, R., MONTRESOR, A., AND URNES, T. 2006. Design patterns from biology
for distributed computing. ACM Trans. Auton. Adapt. Syst. 1, 1, 22–66.

BARAS, J. AND MEHTA, H. 2003. A probabilistic emergent routing algorithm for mobile ad hoc
networks. In WiOpt 2003: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks
(Sophia-Antipolis, France). IEEE Computer Society Press, Los Alamitos, CA.

BIRMAN, K. AND JOSEPH, T. 1987. Exploiting virtual synchrony in distributed systems. In SOSP ’87:
Proceedings of the 11th ACM Symposium on Operating Systems Principles. ACM, New York, 123–
138.

BISKUPSKI, B., CUNNINGHAM, R., DOWLING, J., AND MEIER, R. 2006. High-bandwidth mesh-based
overlay multicast in heterogeneous environments. In Proceedings of the International Workshop
on Advanced Architectures and Algorithms for Internet Delivery and Applications (PISA, Italy).
ACM, New York, to appear.

BLUM, C. AND ROLI, A. 2003. Metaheuristics in combinatorial optimization: Overview and con-
ceptual comparison. ACM Comput. Surv. 35, 3, 268–308.

BRESLAU, L., ESTRIN, D., FALL, K., FLOYD, S., HEIDEMANN, J., HELMY, A., HUANG, P., MCCANNE, S.,
VARADHAN, K., XU, Y., AND YU, H. 2000. Advances in network simulation. IEEE Comput. 33,
59–67.

CABRI, G., LEONARDI, L., AND ZAMBONELLI, F. 2000. Mobile-agent coordination models for internet
applications. Computer 33, 2, 82–89.

CAHILL, V., GRAY, E., SEIGNEUR, J.-M., JENSEN, C., CHEN, Y., SHAND, B., DIMMOCK, N., TWIGG, A., BACON, J.,
ENGLISH, C., WAGEALLA, W., TERZIS, S., NIXON, P., SERUGENDO, G., BRYCE, C., CARBONE, M., KRUKOW, K.,
AND NIELSEN, M. 2003. Using trust for secure collaboration in uncertain environments. IEEE
Perv. Comput. Mag. 2, 3, 52–61.

CAMAZINE, S., FRANKS, N. R., SNEYD, J., BONABEAU, E., DENEUBOURG, J.-L., AND THERAULA, G. 2001.
Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ.

CLARKE, I., HONG, T. W., MILLER, S. G., SANDBERG, O., AND WILEY, B. 2002. Protecting free expression
online with Freenet. IEEE Internet Comput. 6, 1, 40–49.

CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W. 2000. Freenet: A distributed anonymous infor-
mation storage and retrieval system. In Proceedings of the International Workshop on Designing
Privacy Enhancing Technologies. Springer-Verlag, New York, 46–66.

COHEN, B. 2003. Incentives build robustness in BitTorrent. In Proceedings of the 1st Workshop
on Economics of Peer-to-Peer Systems (Berkeley, CA). 251–260.

COLLIER, T. AND TAYLOR, C. 2004. Self-organization in sensor networks. J. Parall. Distrib. Com-
put. 64, 7 (July), 866–873.

CUNNINGHAM, R., DOWLING, J., HARRINGTON, A., REYNOLDS, V., MEIER, R., AND CAHILL, V. 2006. Self-
optimization in a next-generation urban traffic control environment. ERCIM News—Special:
Emergent Computing 64, 55–56.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

32 • B. Biskupski et al.

CURRAN, E. AND DOWLING, J. 2005. SAMPLE: Statistical network link modelling in an on-demand
probabilistic routing protocol for ad hoc networks. In Proceedings of the 2nd Conference on Wire-
less On Demand Network Systems and Services. IEEE Computer Society Press, Los Alamitos,
CA, 200–205.

DECKER, K., SYCARA, K., AND WILLIAMSON, M. 1997. Middle-Agents for the Internet. In Proceedings
of the 15th International Joint Conference on Artificial Intelligence (IJCAI) (Nagoya, Japan).
578–583.

DI CARO, G. AND DORIGO, M. 1998. AntNet: Distributed stigmergetic control for communications
networks. J. Artif. Intell. Res. 9, 317–365.

DI CARO, G., DUCATELLE, F., AND GAMBARDELLA, L. 2005. AntHocNet: An adaptive nature-inspired
algorithm for routing in mobile ad hoc networks. Europ. Trans. Telecom. (Special Issue on Self-
Organization in Mobile Networking 16), 443–455.

DIJKSTRA, E. W. 1974. Self-stabilizing systems in spite of distributed control. ACM Com-
mun. 17, 11, 643–644.

DORIGO, M. AND DI CARO, G. 1999. The ant colony optimization meta-heuristic. In New Ideas in
Optimization. McGraw-Hill, London, U.K., 11–32.

DOWLING, J. 2004. The decentralized coordination of self-adaptive components for autonomic dis-
tributed systems. Ph.D. dissertation, Dept. Computer Science, Trinity College, Dublin, Ireland.

DOWLING, J., CURRAN, E., CUNNINGHAM, R., AND CAHILL, V. 2005. Using feedback in collaborative
reinforcement learning to adapt and optimise decentralized distributed systems. IEEE Trans-
actions on Systems, Man and Cybernetics (Part A), Special Issue on Engineering Self-Organized
Distributed Systems 35, 3, 360–372.

FERBER, J. 1999. Multi-Agent System: An Introduction to Distributed Artificial Intelligence. Ad-
dison Wesley Longman, New York.

FININ, T., FRITZSON, R., MCKAY, D., AND MCENTIRE, R. 1994. KQML as an Agent Communication
Language. In Proceedings of the 3rd International Conference on Information and Knowledge
Management (CIKM ’94), N. Adam, B. Bhargava, and Y. Yesha, Eds. ACM, Gaithersburg, MD,
456–463.

FIPA. 2002. FIPA Interaction Protocol Library Specification. Available at http://www.fipa.org.
GARLAN, D. AND SCHMERL, B. 2002. Model-based adaptation for self-healing systems. In Proceed-

ings of the 1st Workshop on Self-Healing Systems. ACM, New York, 27–32.
GENESERETH, M. R. AND NILSSON, N. J. 1987. Logical Foundations of Artificial Intelligence. Morgan-

Kaufmann, San Francisco, CA, USA.
GOUDA, M. G. 2005. Guest editorial on special issue: Self-stabilizing systems, Part 1. J. High

Speed Netw. 14, 1, 1–2.
GUSTAVSSON, S. AND ANDLER, S. F. 2002. Self-stabilization and eventual consistency in replicated

real-time databases. In WOSS ’02: Proceedings of the First Workshop on Self-Healing Systems.
ACM, New York, 105–107.

HAYDEN, M. 1997. The Ensemble system. Ph.D. dissertation, Dept. Computer Science, Cornell
University.

HEYLIGHEN, F. 2001. The science of self-organization and adaptivity. Encyclop. Life Supp.
Syst. 5, 3, 253–280.

HUHNS, M. N., HOLDERFIELD, V. T., AND GUTIERREZ, R. L. Z. 2002. Achieving software robustness via
large-scale multiagent systems. In SELMAS (Orlando, FL). Springer-Verlag, New York, 199–215.

JELASITY, M. AND BABAOGLU, Ö. 2006. T-man: Gossip-based overlay topology management. In Engi-
neering Self-Organizing Systems. Lecture Notes in Computer Science, vol. 3910. Springer-Verlag,
New York, 1–15.

JELASITY, M., KOWALCZYK, W., AND VAN STEEN, M. 2003. Newscast computing. Tech. Rep. IR-CS-006,
Dept. Computer Science, Vrije Universiteit, Amsterdam, The Netherlands.

JENNINGS, N. R., SYCARA, K., AND WOOLDRIDGE, M. 1998. A roadmap of agent research and devel-
opment. J. Autonom. Agents Multi-Agent Syst. 1, 1, 7–38.

JOHNSON, D., MALTZ, D., AND BROCH, J. 2001. DSR: The dynamic source routing protocol for mul-
tihop wireless ad hoc networks. In Ad Hoc Networking. Addison-Wesley, Reading, MA, 139–172.

MANKU, G. S., BAWA, M., AND RAGHAVAN, P. 2003. Symphony: Distributed hashing in a small world.
In Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems. USITS,
127–140.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

Properties and Mechanisms of Self-Organizing MANET and P2P Systems • 33

MILOJICIC, D. S., KALOGERAKI, V., LUKOSE, R., NAGARAJA, K., PRUYNE, J., RICHARD, B., ROLLINS, S., AND

XU, Z. 2002. Peer-to-peer computing. Tech. rep., HP Labs.
MONTRESOR, A. 2004. A robust protocol for building superpeer overlay topologies. In Proceedings

of the 4th International Conference on Peer-to-Peer Computing. IEEE Computer Society Press,
Los Alamitos, CA, 202–209.

PADMANABHAN, V. N. AND SRIPANIDKULCHAI, K. 2002. The case for cooperative networking. In
IPTPS ’01: Revised Papers from the First International Workshop on Peer-to-Peer Systems.
(London, UK). Springer-Verlag, New York, 178–190.

PARUNAK, H. V. D., BRUECKNER, S. A., SAUTER, J. A., AND MATTHEWS, R. 2005. Global convergence of
local agent behaviors. In Proceedings of the 4th International Joint Conference on Autonomous
Agents and Multi-Agent Systems. vol. 1. ACM, New York, 305–321.

PERKINS, C. E. 2001. Ad Hoc Networking: An Introduction. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA.

PERKINS, C. E. AND ROYER, E. M. 1999. Ad-hoc on-demand distance vector routing. In Proceedings
of the 2nd Workshop on Mobile Computer Systems and Applications. IEEE Computer Society
Press, Los Alamitos, CA, 90–100.

PRIGOGINE, I. AND STENGERS, I. 1984. Order Out of Chaos. Bantam, New York, NY.
RAPOPORT, A. AND CHAMMAH, A. M. 1965. Prisoner’s Dilemma. University of Michigan Press, Ann

Arbor, MI.
RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SCHENKER, S. 2001. A scalable content-

addressable network. In Proceedings of the 2001 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications. ACM, New York, 161–172.

RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ, J. 2004. Handling churn in a DHT. In Proceed-
ings of the 2004 USENIX Annual Technical Conference. USENIX, 127–140.

RIPEANU, M., IAMNITCHI, A., AND FOSTER, I. 2002. Mapping the gnutella network. IEEE Internet
Comput. 6, 1, 50–57.

ROWSTRON, A. I. T. AND DRUSCHEL, P. 2001. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms (Heidelberg, Germany). Springer-Verlag,
329–350.

RUSSELL, S. J. AND NORVIG, P. 2003. Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ.

SACHA, J., DOWLING, J., CUNNINGHAM, R., AND MEIER, R. 2006. Discovery of stable peers in a self-
organizing peer-to-peer gradient topology. In Proceedings of the 6th IFIP International Conference
on Distributed Applications and Interoperable Systems. Lecture Notes in Computer Science,
vol. 4025. Springer-Verlag, New York, 70–83.

SCALABLE NETWORK TECHNOLOGIES, INC. 2003. QualNet Simulator, Version 3.6. Culver City, CA,
USA. http://www.scalable-networks.com.

SCHOONDERWOERD, R., HOLLAND, O. E., BRUTEN, J. L., AND ROTHKRANTZ, L. J. M. 1996. Ant-based
load balancing in telecommunications networks. Adapt. Behav. 5, 2, 169–207.

SEN, S. AND WONG, J. 2004. Analyzing peer-to-peer traffic across large networks. IEEE/ACM
Trans. Netw. 12, 219–232.

SERUGENDO, G. D. M., FOUKIA, N., HASSAS, S., KARAGEORGOS, A., MOSTÉFAOUI, S. K., RANA, O. F., ULIERU,
M., VALCKENAERS, P., AND AART, C. V. 2004. Self-organizing applications: Paradigms and appli-
cations. In Proceedings of the Engineering Self-Organizing Applications Workshop (ESOA ’03).
Springer-Verlag, New York.

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H. 2001. Chord: A scal-
able peer-to-peer lookup service for internet applications. ACM SIGCOMM Comput. Commun.
Rev. 31, 4, 149–160.

SUTTON, R. S. AND BARTO, A. G. 1998. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.

SYCARA, K. 1998. Multiagent systems. AI Mag. 10, 2, 79–93.
SYCARA, K., PAOLUCCI, M., VELSEN, M. V., AND GIAMPAPA, J. A. 2003. The RETSINA MAS infrastruc-

ture. Autonom. Agents Multi-Agent Syst. 7, 1/2 (July), 29–48.
TANENBAUM, A. S. AND VAN STEEN, M. 2001. Distributed Systems: Principles and Paradigms.

Prentice-Hall, Upper Saddle River, NJ.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

34 • B. Biskupski et al.

VAN RENESSE, R., BIRMAN, K. P., AND VOGELS, W. 2003. Astrolabe: A robust and scalable technol-
ogy for distributed system monitoring, management, and data mining. ACM Trans. Comput.
Systems 21, 2 (May), 164–206.

WOLF, T. D., SAMAEY, G., , AND HOLVOET, T. 2005. Engineering self-organizing emergent systems
with simulation-based scientific analysis. In Proceedings of the 4th International Workshop on
Engineering Self-Organizing Applications (Hakodate, Japan). Lecture Notes in Computer Sci-
ence, vol. 3910. Springer-Verlag, New York. 138–152.

WOLPERT, D. AND TUMER, K. 1999. An introduction to collective intelligence. Tech. Rep. NASA-
ARC-IC-99-63, NASA.

WOOLDRIDGE, M. 2000. On the sources of complexity in agent design. Appl. Artif. Intel. 14, 7,
623–644.

WOOLDRIDGE, M. 2002. An Introduction to MultiAgent Systems. Wiley, Chichester, England.
WOOLDRIDGE, M. AND JENNINGS, N. R. 1995. Intelligent agents: Theory and practice. Knowl. Engin.

Rev. 10, 2, 115–152.
YANG, B. AND GARCIA-MOLINA, H. 2003. Designing a super-peer network. In Proceedings of the

19th International Conference on Data Engineering (Bangalore, India). IEEE Computer Society
Press, Los Alamitos, CA, 49–60.

ZHANG, H., GOEL, A., AND GOVINDAN, R. 2004. Using the small-world model to improve Freenet
performance. Comput. Netw. 46, 4, 555–574.

ZHAO, B. Y., DUAN, Y., HUANG, L., JOSEPH, A. D., AND KUBIATOWICZ, J. D. 2002. Brocade: Landmark
routing on overlay networks. In Proceedings of the 1st International Workshop on Peer-to-Peer
Systems (Cambridge, MA). Springer-Verlag Heidelberg, Germany, 34–44.

Received September 2005; revised September 2006 and October 2006; accepted November 2006

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 1, Article 1, Publication date: March 2007.

