Free University Amsterdam
Faculty of Sciences
Warsaw University
Faculty of Mathematics, Informatics and Mechanics

Bartosz Biskupski
Pawel Garbacki

Transparent Fault Tolerance
for
Parallel Java Applications

Master’s Thesis
Specialization: COMPUTER SCIENCE

Supervisor (Free University):
prof.dr.ir. Henri E. Bal

Supervisor (Warsaw University):
dr. Janina Mincer-Daszkiewicz

July 2003

Abstract

In this paper we describe a system that makes parallel Java applications fault tole-
rant. Our goal was to develop a system which is both efficient and transparent to the
programmer. However, we did not aim at solving all classes of applications. We have
concentrated on applications that use the Java Remote Method Invocation mechanism,
which is the most commonly used communication mechanism for parallel programming in
Java. Similarly, we considered only the class of parallel programs that take some input,
compute for a long time, and then yield the result. Such programs, for example, do not
interact with users or continuously update files.

The failures that we consider in our system are crash failures such as server halts,
broken network connections and for some extent also changes in the network relationships.
Our motivation was to avoid having to restart long running parallel computations from
scratch after each crash. Therefore, our system makes from time to time globally consistent
checkpoints of the program’s state. If a processor crashes, the whole parallel program is
restarted from the latest checkpoint rather than from the beginning. Since we implemented
special replication algorithms for storage of significant data, like checkpoints, our system
can resist failures of multiple processors.

Contents

1. Introduction L 5
1.1. Replication 5
1.2. Checkpointing e 6

1.2.1. Independent Checkpointing 6
1.2.2. Coordinated Checkpointing 6
1.3. Message Logging 7
1.4, Summaryo e e e e e e e 7
1.5. Contributions and Overview of Next Chapters 7

2. Local Checkpoints L 9
2.1. Problem statement L 9
2.2. Code Transformation Algorithm 10
2.3. Methods Call Graph 11
2.4. Static Fields Serialization 0., 13
2.5, Limitations e e 13

3. Distributed Checkpointso oo, 15
3.1. Problem statement L o 15
3.2. Centralized Approach oo 15
3.3. Neighborhood 16
3.4. Distributed Coordination Algorithm 18
3.5. Communication Scheme o 22
3.6. Taking Coordinated Checkpoints 22
3.7, Storageo 23
3.8. Faults During Checkpointing Phase 24
3.9. Distributed Fault Detection and Recovery 26
3.10. Summary e e 27

4. Fault Tolerant Remote Method Invocations 29
4.1. Introduction to Remote Method Invocation mechanism 29
4.2. Problem Statement Lo 30
4.3. Our Solution e 31

4.3.1. Replicated RMI Registry Server 31
4.3.2. Replicated RefStore Server 32
4.3.3. Fault Tolerant stubs o . 32
4.3.4. Checkpointed RMI registry 32
4.4, Wrappers o oo e e e 32
4.5, SUMMATY i e e e e 33

5. Checkpoints in Remote Method Calls 35

5.1. Imntroduction 35
5.2. Distributed Threads 35
5.3. Distributed Identityo 36
5.4. Distributed Contexto 37
5.5. Distributed Thread’s State Capturing 38
5.6. Byte Code Transformers 40
5.6.1. Remote Method Transformer 42

5.6.2. Stub Transformer 43

5.7. Overhead 43
5.8. Conclusions e 43

6. Related Work s 45
6.1. Java Thread Migration 45
6.1.1. JavaGoX code transformation algorithm 46

6.1.2. Source Code Modification v.s. Byte Code Transformation 47

6.2. Distributed State Serialization 47

7. Measurements 51
7.1. Imtroduction 51
7.2. Evaluation Environment 51
7.3. Applications 51
7.3.1. Successive Over Relaxation 52

7.3.2. Shallow Watero 52

7.3.3. Traveling Salesman Problem 53

7.3.4. All-pairs Shortest Paths Problem 54

74. Results. e e 54
7.4.1. Performance overhead of the normal execution 54

7.4.2. Performance overhead of taking distributed checkpoint 59

7.4.3. Performance overhead of the recovery process 61

7.5. Methods call graph improvements 63

8. Conclusions and Future Work 65
Bibliography 67

Chapter 1

Introduction

The Java programming language is becoming a more and more popular platform for pa-
rallel computing. Although it is not yet as fast as its C and C++ rivals, it has several
advantages, like portability, flexibility and simplicity. It already dominates in heteroge-
neous environments, like computational grids, where it has to cope with different operating
systems and different network protocols.

Designers of parallel applications frequently ignore fault tolerance, because it requires
much additional effort. With the growth in the number of processors in clusters and rapid
development of computational grids, which provide even larger numbers of processors, fault
tolerance is becoming very important. Consider an application that runs on a thousand
CPUs for 12 hours. Even if the mean-time-between-failure of a CPU is 5 years, the chances
of one of them crashing can no longer be neglected .

Since the Java programming language, despite its wide capabilities, does not provide
any mechanisms for fault tolerance, there are two options. One is to have the programmer
to explicitly deal with fault tolerance. However, parallel programming is hard enough
as it is, and fault tolerance will certainly add even more complexity. The alternative is
to develop some mechanisms that will make programs fault tolerant automatically, in a
way transparent to programmers. Clearly, the latter option is preferable, although it is in
general difficult to implement efficiently.

A failure in non-distributed systems usually results in bringing down the entire ap-
plication. In contrast, the failure in a distributed system is often a partial failure. It
happens when one component in a distributed system fails. The failure may affect the
proper operation of other components, while at the same time leaving other components
unaffected. Well designed distributed systems can automatically detect and recover from
a failure without seriously affecting the performance.

In this chapter, we take a closer look at techniques for making distributed applications
fault tolerant. We provide some general background on fault tolerance techniques focusing
on the checkpointing scheme.

1.1. Replication
The first technique for fault tolerance we address is replication. Replication tries to hide the

occurrence of failures from other processes. There are several types of replication, but from
our point of view the most important are information, time and physical redundancies (see

Tn this case the mean-time-between-failure of one of the CPUs is around 44 hours!

[3]). With information redundancy, data used by the application are replicated on different
nodes. When one of them crashes, data can be restored from backup.

With time redundancy, an action is performed, and then, if needed, it is performed
again. This type of replication is especially helpful when the faults are transient or inter-
mittent.

With physical redundancy, extra nodes or processes are added to make it possible for
the system to tolerate the loss or malfunctioning of some components. Physical replication
can be added on the software or hardware level. We may, for example, have redundant
counterpart processes for services that are sensitive for failures. Physical redundancy is
an expensive approach, but may provide a high degree of fault tolerance. Process groups
are part of the solution for building fault tolerant systems. Having a group of identical
processes allows us to mask one or more faulty processes in that group. A group replaces
one single process. The replication may be organized by means of either primary-based or
replicated-write protocols.

The problem with replication is that having multiple copies may lead to consistency
problems. Whenever a copy is modified, that copy becomes different from the rest. Conse-
quently, modifications have to be carried out on all copies to ensure consistency. Exactly
when and how those modifications need to be carried out determines the price of replica-
tion.

1.2. Checkpointing

Recording a consistent global state, also called a distributed snapshot, is a basic technique
used for fault tolerance. The checkpointing mechanism is widely used in backward error
recovery systems. Each process saves its state from time to time to a stable storage. To
recover after a failure it is essential that all the local checkpoints are globally consistent. It
means that recovery shouldn’t bring up the system to an incorrect state. It is also best to
recover to the most recent distributed snapshot, also referred to as a recovery line.

1.2.1. Independent Checkpointing

The straightforward solution is to allow all processes to record their local state in an unco-
ordinated fashion. This may however make it difficult to find the recovery line. Discovering
a recovery line requires that each process is rolled back to its most recently saved state.
If these local states jointly do not form a distributed snapshot, further rolling back is
necessary.

The method of taking local checkpoints independent of each other is referred to as inde-
pendent checkpointing. The main disadvantage of this scheme is connected with computing
the recovery line that requires an analysis of the interval dependencies recorded by each
process when the checkpoint was taken. Such calculations are fairly complex and do not
justify the need for independent checkpointing. Coordinated approach described below is
much less complicated. Additionally, it often appears that the synchronization is not the
dominating phase of the checkpointing process.

1.2.2. Coordinated Checkpointing

According to its name, in coordinated checkpointing all processes synchronize before writing
their state to a local stable storage. The saved state is automatically globally consistent.
There are many different distributed coordination algorithms like the two-phase blocking

protocol (for details we refer to [3]). Note that to take a consistent checkpoint of a particular
process we do not have to synchronize all processes, but only the processes that depend
on its recovery. This leads to a notion of an incremental snapshot.

As stated before, coordinated checkpoints gain on popularity mainly because of their
simplicity. Independent checkpointing and message logging (see below) schemes are often
too complicated and replication too resource consuming.

1.3. Message Logging

Message logging is a technique that is considered to be less expensive than checkpointing
but still enables recovery. The idea of message logging is based on replaying messages sent
after the most recent checkpointed state.

This approach works under an assumption of a piecewise deterministic model. In such a
model, the execution of each process is assumed to take place as a series of intervals in which
events take place. An event is, for example, executing an instruction or sending a message.
Each interval in the piecewise deterministic model starts with an nondeterministic event
as receiving of a message. From that moment the execution of a process is completely
deterministic. An interval can be replayed in a completely deterministic way when we
know the starting nondeterministic event.

1.4. Summary

Fault tolerance is an important issue of long running distributed applications. A system is
considered to be fault tolerant if it can continue to operate in the presence of errors.

There are different ways of solving the problem of faults. The most straightforward
solution relies on the replication of resources such as processes. The cost of recovery is in
this case limited to the necessary minimum, but the overhead of updating replicas during
normal execution may be expensive.

The checkpointing scheme moves the costs connected with system failure to the reco-
very phase. In general, there are two types of checkpoints. In the independent approach
every process captures its local state without communicating with the others. Problems
start before the recovery. The consistent global image should be composed of the local
checkpoints. This is a nontrivial task, especially when we want to find the most recent
consistent global checkpoint (referred to as a recovery line). Because of these limitations
a much simpler coordinated scheme seems to be a better choice.

Message logging is yet another way for providing a distributed system with fault to-
lerance extensions. This approach requires however special assumptions according to the
system behavior and is at least as complicated as independent checkpoints. Message logging
may be a good idea when we have limited space for storing checkpoints.

1.5. Contributions and Overview of Next Chapters

The main contributions of this work are:

e optimization of Brakes-like [1] byte code transformer by introducing method call
graph analysis

e global coordination algorithm that takes into account the specificity of the check-
pointing process and network topology

e fault tolerant RMI which can recover from a system crash in a completely transparent
way

e mechanisms which allow to initiate checkpoints also inside remote calls

The rest of this paper is organized as follows. Chapter 2 describes the mechanisms used
for making the process of taking local checkpoints transparent to a user and the execution
environment. Distributed aspects of our framework are presented in chapter 3. Fault
tolerant RMI implementation is described in chapter 4. The following chapter 5 reveals
the arcana of the subsystem responsible for handling checkpoints initiated inside remote
method calls. Similar projects are presented in chapter 6. Chapter 7 analyzes the results
of efficiency tests. Chapter 8 concludes this paper.

Chapter 2

Local Checkpoints

2.1. Problem statement

A local checkpoint is a state of a user application running on one node, which allows
to restore the application at the point at which the checkpoint was taken. Transparent
checkpointing ideally means that no explicit code has to be provided to save or restore an
application’s state. However, there is a difficulty in making transparent checkpoints. A
local checkpoint has to preserve three states:

e Program state: which is the bytecode of the object’s classes.
e Object state: the contents of the bytecode of the object’s class.

e Execution state: a Java object executes in one or more JVM threads. Each thread
has its own private Java stack (see figure 2.1). A Java stack stores frames. The JVM
creates a separate frame for each invoked method and destroys it when a method
completes. Each frame contains its own local variables, operand stack on which
JVM saves partial results of computations and program counter, which indicates the
next instruction to be executed.

’
e operand_m
’
operand_1
pc

~ .

N variable_n
~5
-~
~
-~
. 1
-~
~

Q‘ .

.~ variable_1
|

Java stack

Figure 2.1: Java stack

The Java language supports preserving of the first two states. By defining a custom class
loader, necessary classes can be downloaded. Object state is preserved using serialization
mechanisms. The only problem concerns execution state capturing and reestablishing, due
to the lack of built-in mechanisms in Java. An application, on a bytecode level, has access
only to the current method frame and therefore there is no straightforward way to preserve
the whole Java stack.

To deal with this issue several techniques have been proposed (see chapter 6.1). We
have chosen the technique used in the Brakes [1] project with some new improvements
and modifications. This algorithm uses a Java post-compiler, which instruments bytecode
by inserting additional code blocks that do the actual capturing and reestablishing of the
current thread’s state.

2.2. Code Transformation Algorithm

This section describes the code transformation algorithm. Each computation is associated
with a separate Contert object into which its execution state is captured and from which
its execution state is later reestablished. Finally, each computation is associated with a
number of boolean flags, which indicates the current execution mode. A computation can
be in one of three different modes of execution: running (normal execution), capturing
(before serialization) and restoring (after deserialization).

Inside every method additional code that saves the method’s frame is inserted (see figure
2.2)!. Every method invocation is followed by a code block that checks if the computation
is in a capturing state (its capturing flag is set) and if so, it saves in the context its operand
stack, local variables, its last performed invoke-instruction (LPI) and immediately returns.
This will continue until the thread is back where it started. At that time, the thread’s

public class Foo {
private Bar bar = new Bar(...);
public void fQ {
// calling method
int 1 = 0;
java.util_Date today = ...;
java.util_Vector v = new Vector();

it (...){
boolean test = false; it isCapturing() {
I store stack frame into
} context;
LP1 int k = 5 * bar.b(today); store artificial PC as
- LPI-index;
} return;
T T
public class Bar { Go to previous|stack frame

public int b(Java.util_Date date) {
// top frame’s method

if isCapturing() {
store stack frame into
context;
store artificial PC as
LPI-index;
3 return;

b }

LPI omputation.capture();

return ...;

Figure 2.2: State Capturing

'Examples come from [1]

10

context contains the whole trace the thread followed.

Accordingly, inside every method additional code that restores the method’s frame is
inserted (see figure 2.3). When the thread is to be restored, a new thread is started and
the restoring flag is set. The first stack frame is restored (local variables and operand stack
are reestablished) and the thread jumps to this method’s LPI. This causes invoking the
next method on the method’s stack. The situation is repeated until the thread reaches the
method that started capturing. The capturing flag is then cleared and the thread continues
its execution like nothing happened.

public class Foo {

private Bar bar = new Bar(...); if isRestoring() {
public void f() { get LPI from context;

/1 calling method switch (LPI) {

int 1 =0;
java.util.Date today = ...;
java.util.Vector v = new Vector();

case invoke_ b:
| oad stack frane;

stack frame

ifo(...) { got o i nvoke_b;
bool ean test = fal se; }
}
LPI int k =5 * bar.b(today); Go to next
}
}
if isRestoring() {
public class Bar { get LPI from context;
public int b(java.util.Date date) { switch (LPI) {

/1 top frame’s nethod
.. \ case i nvoke_capture:
onmput ati on. capture(); | oad stack frane;

.. goto i nvoke_capt ure;
return ...;
} }
} }

Figure 2.3: State Reestablishment

Figure 2.4 presents a flow diagram for example source code, where the order of taken
actions is given in circles and squares respectively for state capturing and reestablishing.

2.3. Methods Call Graph

One of the improvements we have made to this algorithm over the original one from the
Brakes project is building the method’s call graph to modify only methods and method
invocations that can lead to execution state capturing. Algorithm 1 presents the process
of building the methods call gaph.

11

thread t(j)

b()
0 | .-
call stack t(i)

——> capturing ——reestablishing

Figure 2.4: Flow diagram for state capturing (numbers in circles) and reestablishing (num-
bers in squares)

Algorithm 1 Building methods call graph

[e e e e
S L XIS PO

procedure buildCallGraph(Class rootClass, Method rootMethod)
begin
if captureSet.contains(rootClass, rootMethod) then
return
end if
captureSet.add(rootClass, rootMethod)
for each (C, M) which can invoke (rootClass, rootMethod) do
buildCallGraph(C, M)
end for
for each superclass C which rootClass extends do
if C contains rootMethod then
buildCallGraph(C, rootMethod)
end if

: end for
: for each interface I which is implemented by rootClass do

if I contains rootMethod then
buildCallGraph(I, rootMethod)
end if

. end for
. end

12

The algorithm builds the set of all <class, method> pairs which invocation can lead
to state capturing. It begins from the method which starts the actual state capturing (in
our case it is Checkpointer.makeCheckpoint ()). Then, it finds all methods in all classes
which can invoke that method and recursively starts from those methods. However, during
compile-time the real object’s class is not know - it can be either the declared one or one of
its subclasses. Similarly, if a method is invoked on the interface, the real class of the object
is not known - we only know that the requested class implements (directly or not) that
interface. Therefore, all super classes and implemented interfaces which contain processed
method have to be added to the set. Finally, the transformer rewrites only invocations of
methods which exist in the generated set. The comparison of our improved transformation
algorithm with the original one from the Brakes project is shown in chapter 7.5.

2.4. Static Fields Serialization

The Java object serialization mechanism does not support serialization of static fields
in classes, because such fields do not correspond to any specific object. However, our
checkpointing mechanism requires that all objects have to be preserved. In our case it
would be convenient to serialize static fields as well. Therefore, we developed a Java
bytecode post-compiler, which adds this feature to our system.

Our transformation algorithm searches for static fields in each user class and adds two
methods: saveStaticFields and restoreStaticFields which respectively save all static
fields to StaticContext object and restore them from that object. Finally, it adds two
methods to the user’s main class: saveStaticContext and restoreStaticContext which
call respectively saveStaticFields and restoreStaticFields in all user classes which
contain static fields. After this transformations it is possible to preserve both object state
and all static fields.

2.5. Limitations

Unfortunately, it is not possible to achieve full transparency in state capturing. Firstly,
not all objects can be preserved. There are many non-serializable Java classes, like classes
responsible for accessing sockets and files. There are also some classes, which are location
dependent, like RMI stubs, which have hard coded IP address and port number of remote
object. We addressed this problem in our system by introducing Persistent RMI which is
a location independent RMI and is described in details in chapter 4.

Secondly, transformation algorithms cannot handle native methods, since they extract
thread execution state at the bytecode level.

Thirdly, although possible, our algorithm can not deal with state capturing during the
execution of an exception handler. The major difficulty here is dealing with the finally
statement of a try clause because the return address from a subroutine is not known during
compile time.

Finally, should Java API libraries (i.e. from java.* packages) be modified or not? In
most cases it is not necessary, since library calls do not initiate state saving by themselves.
The exception to this are library calls that result in a callback to the application code. For
example when using graphical packages, like Swing or AWT, events cause callbacks in user
application code. We decided not to transform these classes.

13

Chapter 3

Distributed Checkpoints

3.1. Problem statement

In the previous chapter we addressed the issue of taking local checkpoints. Local means
that all the threads we want to serialize are running within the same address space. We
extended the applicability of our solution to the class of distributed applications by using
the coordinated checkpointing scheme (see section 1.2.2). As its name suggests, in coor-
dinated checkpointing all the threads running on different machines have to synchronize
before writing their state to the stable storage. The advantage of global coordination is
that the saved state is automatically globally consistent (see chapter 1). However, global
coordination in the nondeterministic distributed environment is not a simple problem, es-
pecially when we are thinking in terms of efficiency and reliability. Let us point some of
the problems connected with coordination of Java processes:

e portability as main design goal limits us to standard Java communication mecha-
nisms. Remote Method Invocation (RMI) - the most popular way of remote process
communication does not offer group communication facilities such as broadcasting or
multicasting

e we have to deal with a situation when either multiple threads initiate the state
capturing exactly at the same time or the time interval between the first and last
request is non-negligible

e our goal is to provide extensions for fault tolerance. It also concerns (of course to
some extent) the coordination phase. We should take into account a possibility of a
crash also during coordination

Below we describe the components of our global checkpointing subsystem starting from
a distributed barrier.

3.2. Centralized Approach

In this section we present our solution for the global coordination problem. We need a
kind of distributed barrier that will assure consistency of the captured state. The Java
programming language offers thread synchronization support by means of monitors. The
synchronized keyword in the signature of a method guarantees that it will be executed by
not more than one thread at the same time. It is much harder to synchronize processes in

15

the distributed environment. The concerns usually center around efficiency/performance
and how to re-coordinate if something breaks.

The straightforward solution for thread coordination in the distributed environment is
to implement the remote object with a synchronized barrier method. Such an object can
be then exposed through the RMI interface. Threads (running on different machines) that
invoke the barrier method can be suspended until all of them declared readiness. The
node where the coordination service is installed is called a coordinator node.

This simple algorithm has some drawbacks. First of all, one node (the coordinator) is
outstanding. It has to gather synchronization requests from all other processes. Because
of this fact the coordinator node is often referred as a bottleneck node.

Another, more subtle problem may be considered when talking about specific types
of applications. The distance between nodes in the distributed system is usually not the
same. The well designed system may make use of network topology to increase efficiency
and reliability. For instance, if some of the components are located on the other end of
the world, it would be nice if we could group them together and then, using one or two
method calls, synchronize this group with the rest.

Last but not least, the centralized scheme does not make use of specificity of our task.
Checkpoints are very rarely initiated at the same time at different nodes. This observation
can be used for optimizing the synchronization process.

Till now we concentrated on the disadvantages of the centralized scheme. Of course
there are advantages as well. This algorithm is optimal when considering the number of
messages sent or remote method calls. Another, often ignored, but quite important issue
is the simplicity. Simple usually means easy to implement.

3.3. Neighborhood

To improve efficiency and reduce synchronization delay we introduced the configurable
component that allows the user to tune up our framework according to the network topo-
logy. Neighborhood function defines the rules of control messages routing inside our system.
As we mentioned before in this chapter, Java RMI does not provide us with a support for
group communication. In the situation when broadcasting has to be done at the software
level, it is reasonable to map the physical network interconnection scheme to the software
communication model.

Figure 3.1 shows some basic network topologies and exemplary neighborhood functions.
Broadcast is always initiated at the node (0. Messages are sent along the arrows, first to
the node with the smallest identifier.

The diagram 3.1(a) shows the simplest situation - physical network topology is mapped
directly onto the logical scheme. It takes 4 time units to complete the broadcast under
assumption that sending a message takes one time unit. The sending phases look as follows:

1. 0 sends message to 1
2. 0 sends message to 2, 1 sends message to 3
3. 2 sends message to 5, 1 sends message to 4

4. 2 sends message to 6

In the diagram 3.1(b) every two nodes are connected to each other. The message
sending phases defined by the neighborhood are:

1. 0 sends message to 1

16

@

=

. - (b)

--- — @©

fast network slow network neighborhood broadcast broadcast
connection connection function initiator node participant node

Figure 3.1: Network topologies and neighborhood. Straightforward network interconnec-
tion to neighborhood mapping (a), Ethernet-like bus (b) and multi-cluster scheme (c).

2. 0 sends message to 3, 1 sends message to 2
3. 0 sends message to 5, 1 sends message to 4, 2 sends message to 6

Finally, figure 3.1(c) presents the most complicated variant of two fast local networks
connected with a slow links. There are following message sending phases:

1. 0 sends message to 1
2. 0 sends message to 6, 1 sends message to 2
3. 1 sends message to 3, 2 sends message to 4
4. 3 sends message to 5

Note that broadcast could be finished in 3 instead of 4 time units. Node 0, which is idle
during third and fourth phase, could be used for sending the message to node 5 in the
third phase. However, this variant requires sending one more message over the slow link,
that may introduce bigger overhead than the additional phase.

The intuitive meaning of neighborhood function should be clear now. We introduced
the notion of neighborhood for the purpose of the next section where we describe the global

17

barrier synchronization. To assure the correctness of the coordination algorithm, we have
to limit the set of all possible neighborhood functions to a class that satisfies the following
conditions:

e the neighborhood function defines a graph that is a tree

e the neighborhood function is a function of three parameters - actual node number,
root node number and total number of nodes

The first point should be clear - we are using our virtual interconnection structure for
broadcasting. There is no point for having cycles in the graph. The second sentence states
that all children nodes of a particular node should be determined by its own identifier,
identifier of root node and total number of nodes in our graph. Note that this condition
requires global ordering of nodes.

3.4. Distributed Coordination Algorithm

Because of the limitations of the centralized algorithm and specificity of checkpointing
subsystem we decided to design own distributed coordination algorithm that best fits our
needs. As mentioned in the previous section there are some observations we may make to
improve the robustness of our solution. These are the design goals of our algorithm:

e make use of different network topologies

e take into account that the time interval between the first and the last checkpoint
request may be long and use this time for useful synchronization work

e tolerate some faults that occur during coordination phase

According to chapter 2 all local threads on every node are synchronized locally before
initiating the distributed checkpoint. This situation is presented in figure 3.2.

Algorithm 2 is our proposition for barrier synchronization that coordinates processes
involved in the global state capturing process.

18

@

(b)

(©

Remote method call

Node

Remote thread

L

Local thread

Local barrier

Distributed barrier

Figure 3.2: Local and distributed barrier. Situation before synchronization (a), local
threads synchronized on every node (b) and global barrier (c).

19

Algorithm 2 Global barrier synchronization
Require:

n_nodes - number of all nodes

node_no - actual node number
Ensure:

processes on all nodes reached the barrier

1: if got message SYNCHRONIZATION_REQUEST (coordinator) then

2: wait for SYNCHRONIZATION_CONFIRMATION(global_coordinator)

3: else

4: coordinator := node_no

5. for all neighbor in neighbors(node_no, node_no, n_nodes) do

6: local_coordinator := process SYNCHRONIZATION_REQUEST(node_no) at
neighbor

7: if local_coordinator.getPriority() > coordinator.getPriority() then

8: coordinator := local_coordinator

9: end if

10: end for

11: if coordinator == node_no then

12: global_coordinator := node_no

13: else

14: wait for SYNCHRONIZATION_CONFIRMATION(global_coordinator)

15: end if

16: end if

17: for all neighbor in neighbors(node_no, global_coordinator, n_nodes) do
18: process SYNCHRONIZATION_CONFIRMATION(global_coordinator) at neighbor
19: end for

There are few things that should be explained about algorithm 2. The neighbors(
actual_node, root_node, total_nodes) function computes the set of actual_node node
descendants when the root node of the broadcasting structure is root_node and there is
total_nodes nodes in general.

The coordinator of the whole process is elected dynamically. The synchronization
phase may be initiated by multiple processes by means of broadcasting the SYNCHRONIZA-
TION_REQUEST message, but it is a task of one node to confirm global synchronization by
sending the SYNCHRONIZATION_CONFIRMATION message. Messages are parametrized with
the identity of their creator. This fact brings another observation - broadcast trees may
vary, depending where the initial message was created. global_coordinator variable
contains the identifier of the elected coordinator that will finally send the SYNCHRONIZA-
TION_CONFIRMATION message.

The process message at node is a complex construct that consists of message sending
and processing at destination node. The processing may return a value.

To understand why the algorithm guarantees that there is only one coordinator elected
let us now look at the message processing phase. Algorithm 3 describes it in detail.

Note that broadcast of message message is continued only if receiver at the actual node
did not get the message with higher priority yet (checked in line 2). By this condition we
are trying to limit the number of redundant messages sent.

If the message, we got, was sent by a process with a higher priority than any of previ-
ously received messages, the coordinator is determined by the neighbors of actual node.

20

Algorithm 3 Message processing
Require:
message - message to be processed
n_nodes - number of all nodes
node_no - actual node number
Ensure:
returns coordinator of the subtree defined by neighborhood function and rooted in
actual node
1: coordinator := message.getCreator()
if got message SYNCHRONIZATION_REQUEST(local_coordinator) and
local_coordinator.getPriority() > coordinator.getPriority() then

v

3: return local_coordinator

4: else

5: local_coordinator :— coordinator

6: for all neighbor in neighbors(node_no, coordinator, n_nodes) do

T new_coordinator :— process message at neighbor

8: if new_coordinator.getPriority() > local_coordinator.getPriority()
then

9: local_coordinator := new_coordinator

10: end if

11: end for
12: if local_coordinator <> coordinator then

13: return local_coordinator

14: else

15: wait for application running on local node to invoke barrier

16: if got in the meantime message SYNCHRONIZATION_REQUEST(local_coordinator)
such that local_coordinator.getPriority() > coordinator.getPriority()
then

17: return local_coordinator

18: else

19: return coordinator

20: end if

21: end if

22: end if

At last, our algorithm should synchronize all the nodes, so at some point (line 15) we
have to wait for the application part, we are responsible for, to invoke global coordination
request.

Algorithms 2 and 3 try to implement some kind of heuristic for minimizing the number
of messages sent and synchronization delay. By synchronization delay we mean the dif-
ference between the time when the last process invoked the barrier function and the time
when the last process left the barrier.

The efficiency depends not only on the neighborhood function, but also on the barrier
notification scheme. For example, when there is one process that is much faster than the
others, the SYNCHRONIZATION_REQUEST can be delivered to every node before any of them
will even invoke the barrier function. The coordinator will be known already in the initial
phase of the algorithm and we will not have any redundant messages at all. When the
processes at all nodes run more or less at the same speed we may have race conditions.

21

The synchronization delay is, probably even more than redundant messages overhead,
dependent on the neighborhood function. When we use a ‘smart’ one that groups together
nodes with similar characteristics according to barrier synchronization initiation times, we
can achieve good results.

3.5. Communication Scheme

One thing that needs to be specified in order to fully understand the algorithms described
in the previous section is the communication scheme. To use the advantages of parallel
broadcasting we decided to base our system on parallel synchronous messaging. Parallel
synchronous means that communication with neighbors is synchronous, but messages are
sent to different neighbors in parallel. The initiator is blocked until all its descendants
accepted the message. Senders are implemented as separate threads and are reused across
different synchronization phases. The sender’s life cycle is showed in figure 3.3.

Sender pool

get sender

Communication initiator Receiver

P~
Q
=

Sender pool

Communication initiator Receiver

—
o
=

Sender pool

put sender

Communication initiator Receiver

—~
o
<

Figure 3.3: Senders. Before sending Message Initiator has to obtain a Sender from Sender
pool (a), Sender takes care of communication (b), Initiator returns Sender to Sender pool
after Message was delivered.

3.6. Taking Coordinated Checkpoints

We have described the distributed synchronization algorithm. Now we will discuss its ap-
plication to the coordination of distributed checkpoints. Taking globally consistent check-
points in our distributed environment is nothing more than adding synchronization barriers

22

to the scheme described in chapter 2. Of course these synchronization points have to be
added in appropriate places.

First, we are synchronizing all the processes running on different nodes just after they
initiated the state capturing. Just after means that all local threads on all machines have
to be suspended on top of their Java stacks.

The second coordination takes place just before starting the application. Again, just
before means after all threads rebuild their Java stacks and are about to carry on with the
suspended computations. In fact the system is in exactly the same state when the first
and second synchronization take place.

At first sight two synchronization phases can be reduced to only one. However, a
scenario in which a thread first captures its stack, then synchronizes and finally saves the
checkpoint into stable storage can lead to inconsistencies. One barrier is not enough when
we want to capture the state inside synchronized methods. If we skip the coordination
before taking the checkpoint, we can end up with a checkpoint that sees more than one
active process inside synchronized method. On the other hand, omitting barrier after state
capturing may result in the race condition and prevent some processes from fully restoring
their Java stacks.

State capturing in remote method calls requires two additional synchronizations. For
details see chapter 5.

3.7. Storage

We use the term stable storage in regard to a component responsible for persisting check-
points. Stable storage is a subsystem whose task is to guarantee availability of supervised
data even if some of its elements fail. We want to have our system not only software but
also hardware faults resistant. To fulfill this requirement we decided to use replication.

Again, in order to allow the end user for tuning up the system the node mapping
function was introduced. The idea is similar to the neighborhood. However, computing
descendants in a broadcast tree is replaced by determining nodes where checkpoint should
be stored.

Figure 3.4 shows the arcana of data storing phase.

We may think about stored data in terms of local checkpoint. Note that data are
always saved on the local node first. This decision will be explained in the next section.

Data retrieving is presented in figure 3.5.
If a node is down we just skip it and try to contact the next one.

We implemented two different storing systems. One is based on the file system, the
other keeps all data in the random access memory.

23

Node A Node B Node C Node D
Checkpointing
process

Stable storage Stable storage

@)

Stable storage Stable storage

Node A Node B Node C Node D

‘Checkpointing
process

Stable storage Stable storage

‘ Checkpoint '

(b)

Stable storage Stable storage

‘ Checkpoint ' ‘ Checkpoint ' ‘ Checkpoint ’

C =f(B) = f(f(A))

D = (C) = f(f(B)) = f(f(f(A))

Figure 3.4: Data storing. Checkpointing process has to decide where to place the Check-
point data (a), Node Mapping function determines locations of backups (b).

3.8. Faults During Checkpointing Phase

Our task was to provide a framework for fault tolerance in the distributed environment.
Highly reliable system should be aware of the fact that some of its components may also
be a subject of different faults. In our situation, when processes can declare readiness for
global checkpoint at arbitrary point in time, it is even more important. Table 3.1 shows
which kind of faults our system can deal with.

The column and row headers of the above table may require explanation. Phrase
“before first / second barrier” describes a set of faults that occurred before the first node
reached the first / second barrier. “After first / second” barrier characterizes all the faults
that occurred after the last node left the barrier synchronization function.

+ means that system will be able to recover if fault occurs during this phase

— means that we do not give any guarantees according to success of the recovery process

24

Node O

Recovering
process

Node C

@)

Stable storage Stable storage

(oo)

Node O Node C

Recovering
process

=)
(b)

Stable storage Stable storage

=) =D

Stable storage Stable storage

‘ Checkpoint '

Figure 3.5: Data restoring. Recovering process does not have a copy of data it needs in
local Stable Storage (a), data is retrieved from non faulty backup node (b).

Table 3.1: Fault tolerance coverage regions

1 2 3 4 5
Support level + + — — +
1: Before first barrier begin 2: First barrier begin - first barrier end

3: First barrier end - second barrier begin 4: Second barrier begin - second barrier end
5: After second barrier end

25

The problem with phases marked with minus signs lies in our policy according to
checkpoints’ storage. We do not use any versioning system. Only the newest checkpoints
are stored. Somewhere between first and second barrier coordinators running on every
node take a local checkpoint. If the fault occurs when some of the processes have already
stored new state in the stable storage and some of them not, there is no consistent data
available.

3.9. Distributed Fault Detection and Recovery

In this section we describe the recovery algorithms we used in our system. Algorithm 4
presents the arcana of the recovery process.

Algorithm 4 Distributed recovery
Require:
n_nodes - number of all nodes
node_no - actual node number
Ensure:
processes on all nodes recovered to the latest consistent global checkpoint

1: coordinator := node_no

2: for all node in 0..n_nodes - 1 do

3: if node is not a faulty node then

4: local_coordinator := process FAULT_DETECTED (node_no) at node
5: if coordinator.getPriority() < local_coordinator.getPriority() then
6: coordinator := local_coordinator

7 end if

8 end if

9: end for

10: if coordinator == node_no then

11: for all node in 0..n_nodes - 1 do

12: if node is faulty node then

13: backup := node_mapping(node)

14: process RECOVERY_REQUEST (node) at backup
15: end if

16: end for

17: for all node in 0..n_nodes - 1 do

18: if node is not a faulty node then

19: if node <> node_no then

20: process RECOVERY_REQUEST (node) at node
21: end if

22: end if

23: end for

24: process RECOVERY_REQUEST (node_no) at node_no
25: end if

The recovery phase, like the barrier, needs a global coordinator. We use the similar
approach and elect the coordinator dynamically. FAULT_DETECTED message carries an iden-
tifier of the node where it was created. RECOVERY_REQUEST message instead is labeled with
the identity of a node that should be recovered.

26

One thing that may be unclear in presented algorithm is the need for distinguishing
between faulty and non-faulty nodes. We assume, that errors do not occur too often
one after another so to reduce the costs of recovery, we drop the old checkpoints before
restarting the application. This condition requires recovering faulty nodes before rolling
back the others to the last consistent checkpoint.

The algorithm of processing the RECOVERY_REQUEST message is straightforward. We
just read the checkpoint from stable storage and restart the application on the appropriate
node. The node_mapping function, as explained before, points out the node where the
backup of part of the application we want to recover is located.

Now it should be clear why it is wise to keep a copy of the latest checkpoint locally.
Backup storage should be used to recover processes that crashed on remote machines.
Properly working parts of the application can resume computation on the same machine
they were before. In this case the recovery requires hardly any network communication -
all data are stored locally.

Our system contains a component which is responsible for replicating checkpoints on
different machines. For simplicity this functionality was skipped in the description of
algorithm 4.

There are four situations that initiate recovery process. Firstly, the user application
can explicitly invoke the scanning procedure that will check which nodes are down. This
action is usually taken if the application part running on one node can not contact an other
node. Secondly, our framework can notice breakdowns of some elements when it performs
global barrier synchronization. Thirdly, crash of a remote object may be discovered by
fault tolerant RMI subsystem. Finally, there is a dedicated thread running on every node
which task is to check periodically whether all remote processes are up and running.

The components responsible for resurrection of the application from the checkpoint are
called activators (see figure 3.6).

3.10. Summary

In this chapter we revealed distributed aspects of our checkpointing scheme. We presented
algorithms we used and motivated crucial decisions. Some of our ideas are general purpose
solutions, but most of them are based on the specificity of distributed checkpointing model.
In the following chapters we will present extensions to the model described here.

27

Node A' Node O
Activator Recovering
process process
=D
@
Application
process
Node A' Node O
Activator activate Recovering
process process
=D
(b) |
Application
process
Node A' Node O
Activator Recovering
process process
=)
() instantiate '
Application Application
process process

Figure 3.6: Activators. Checkpoint of crashed node is in possession of recovering pro-
cess (a), Checkpoint is sent out to Activator on backup node (b), Activator instantiates
application on local node (c).

28

Chapter 4

Fault Tolerant Remote Method
Invocations

4.1. Introduction to Remote Method Invocation mechanism

Distributed systems require that computations running in different address spaces, poten-
tially on different hosts, be able to communicate. For a basic communication mechanism,
the Java programming language supports sockets, which are flexible and sufficient for ge-
neral communication. However, sockets require an application programmer to design and
implement protocols to encode and decode messages for communication between the client
and the server. The design of such protocols is inconvenient and can be error-prone.

The Java programming language provides an alternative for sockets, which is the Re-
mote Method Invocation (RMI) mechanism. The main advantage of this mechanism over
plain sockets is the comfort of its use. It gives the programmer an illusion of calling just
normal methods and does not engage the programmer into complicated communication
details. Therefore, it became the most widely used mechanism for distributed computing
in Java. In this section we briefly describe RMI. For a complete description of RMI, see
Sun’s RMI specification [11].

RMI applications often consist of two parts: a server and a client. A typical server
application creates a number of remote objects, makes references to those remote object
accessible, and waits for clients to invoke methods on those remote objects. A typical
client application gets a remote reference to one or more remote objects in the server and
invokes methods on them. RMI provides a mechanism by which the server and the client
communicate and pass information back and forth.

From the programmer’s point of view, each remote object provides an interface con-
taining all methods that can be called by clients on that remote object. The programmer
does not have to be aware of details of a remote method invocation, but simply calls meth-
ods on that interface. What actually happens is that the programmer calls methods on
a local stub object implementing that interface, which plays the role of a proxy between
the client and the server. The stub object establishes a connection with the remote object
on the server, passes serialized method’s parameters and returns a deserialized server’s
response. The stub object signals all errors which may occur during a remote method call
by throwing an exception, which should be caught in the application.

Before a client application can call methods on a remote object, first it has to somehow
obtain a remote reference to that object. It can use one of two mechanisms. An application
can register its remote objects with RMI’s simple naming facility, the rmiregistry, or the

29

application can pass and return remote object references as part of its normal operation.

Figure 4.1 shows a distributed application that uses the RMI registry to obtain a
reference to a remote object. The server calls the registry to associate a name with a
remote object’s reference. The client looks up the remote object’s reference by its name in
the server’s registry and then invokes a method on it.

RMI (lookup)
RMI (register)

Cient

O
O

Server

Figure 4.1: Remote Method Invocation

4.2. Problem Statement

Java Remote Method Invocation (RMI) is the primary model for distributed computing in
Java. However, while Java RMI promotes access transparency and location transparency
of remote servers to clients, it does not provide fault tolerance mechanisms to render faults
transparently to the application. Instead, the occurrence of a fault in the system is exposed
to the application, requiring application programmers to provide additional mechanisms
to ensure correct, reliable and highly-available operation, even in the presence of faults.

A typical way to create a custom remote object is to extend the UnicastRemoteObject
class. When such an object is instantiated, it is exported to specified port number and
since that time it is available for remote clients. Clients call methods on local stub objects
to access remote objects. Each stub holds a remote reference object responsible for the
whole low-level communication with the remote object. A stub class is generated using
rmic Java tool. Stub objects are serializable and therefore can be sent to other machines
in the network and used by them as long as remote object is working. Each remote object
is uniquely identified by three properties, which are assigned to its stub’s remote reference
during instantiation:

o IP address
e port number
e unique Objectld, which is assigned during instantiation, so each instance of the same

class is uniquely identified.

30

All these properties make remote objects location dependent. When a machine on which
a remote object is located fails, then all stubs corresponding to that object owned by the
clients will become incorrect and their use will cause an error. Therefore, we developed
mechanisms for Fault Tolerant RMI.

Ref Store 1 . Ref Store 2

Recover ed
Renot e
hj ect

4.3. Our Solution

Figure 4.2: Fault Tolerant RMI

Our system was designed not to have any single point of failure. In order to achieve
this, components of our system use replication and checkpointing mechanisms.

4.3.1. Replicated RMI Registry Server

The first layer of our Fault Tolerant RMI forms a replicated RMI registry server (see figure
4.2). Tt is replicated for fault tolerance in the read-one, write-all fashion, which means that
clients have to propagate changes to all replicas, but they can read from only one of them
(A.Tannenbaum and M. van Steen in their book [3] present several replication algorithms).
When one replica crashes, the rest will still serve clients. When either a new or a recovered
replica is started, it will automatically update itself by retrieving data from other replicas.
The locations of all replicas are stored in the environment variables.

31

4.3.2. Replicated RefStore Server

The essence of our Fault Tolerant RMI lies in the use of a replicated server, which we
called RefStore. It is responsible for storing pairs of <old (incorrect) remote reference,
new remote reference>. Alike our RMI registry, it is also replicated for fault tolerance
in the read-one, write-all fashion. In order to be found, each replica of the RefStore
server registers itself in the replicated RMI registry server (1). Our system provides a
PersistentUnicastRemoteObject class which extends the UnicastRemoteObject class
and is used for creating fault tolerant remote objects. Instances of this class are stored in
a checkpoint together with the rest of the user application. Each time they are deseria-
lized from the checkpoint due to the failure of the original host, a new remote reference,
containing new remote object’s location, is sent to all replicas of the RefStore server (2).

4.3.3. Fault Tolerant stubs

Our system provides also a Java bytecode post-processor for transforming stub class files.
After transformations stubs do not raise an exception when they cannot locate remote
object (3), but they initiate the recovery process. When the application is being recovered,
stubs obtain a new remote reference from one of the replicated RefStore servers (4) and
after the recovery, they use it for contacts with the remote object (5). The transformation
algorithm adds to each stub’s class file an additional ping method that try to contact with
the remote object and in the case of failure it fetches the new remote reference. The ping
method is invoked during the recovery process on every stub object in the user application.

4.3.4. Checkpointed RMI registry

User applications, which use Remote Method Invocation model, typically use the RMI
registry for exchanging remote references to their remote objects. Since the node on which
standard Java RMI registry is running may fail, thus causing faults in the whole dist