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Abstract. A major challenge facing grid applications is the appropriate
handling of failures. In this paper we address the problem of making par-
allel Java applications based on Remote Method Invocation (RMI) fault
tolerant in a way transparent to the programmer. We use globally consis-
tent checkpointing to avoid having to restart long-running computations
from scratch after a system crash. The application’s execution state can
be captured at any time also when some of the application’s threads
are blocked waiting for the result of a (nested) remote method call. We
modify only the program’s bytecode which makes our solution indepen-
dent from a particular Java Virtual Machine (JVM) implementation. The
bytecode transformation algorithm performs a compile time analysis to
reduce the number of modifications in the application’s code which has a
direct impact on the application’s performance. The fault tolerance ex-
tensions encompass also the RMI components such as the RMI registry.
Since essential data as checkpoints are replicated, our system is resilient
to simultaneous failures of multiple machines. Experimental results show
negligible performance overhead of our fault-tolerance extensions.

1 Introduction

Computational grids become increasingly important to solve computationally
intensive and time consuming problems in science, industry, and engineering [3,
4, 21]. Since the failure probability increases with a rising number of components,
fault tolerance is an essential characteristic of massively parallel systems. Such
systems must provide redundancy and mechanisms to detect and localise errors
as well as to reconfigure the system and to recover from error states.

Java’s platform independence is well suited to a heterogeneous infrastructures
that typify grid architectures. The object oriented nature of Java facilitates and
code reuse significantly reduces development time. There is a wide variety of
interfaces and language extensions that simplify parallel programming in Java
not to mention Java threads and Remote Method Invocation (RMI) [2] which are
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parts of the Java specification [10]. Despite all these facilities, the Java Virtual
Machine (JVM) [12] standard does not support fault tolerance.

In this paper we present the design, implementation and evaluation of a
system that provides coordinated checkpointing and recovery for RMI-based
parallel Java applications with a focus on grid computing. Our approach is novel
in that it was designed to be transparent to the programmer, requiring minimal
changes to the application code.

The contributions of this paper are the following: first we design and imple-
ment a Java bytecode transformer that makes the application programs resilient
to failures by means of checkpoint-recovery. The comprehensive compile time
analysis significantly reduces the overhead incurred by the application code mod-
ifications. Second, we present a technique that allows checkpointing even inside
(nested) remote method calls. Third, we provide mechanisms which enable RMI
components to recover from a system crash in a completely transparent man-
ner. Finally, we present performance results for classic parallel applications. As
a yardstick, we compare the performance of Java applications with and without
the fault tolerance extensions.

The rest of this paper is organized as follows. Section 2 lists the related work.
Sections 3 and 4 describe the capturing and reestablishing of the state of a
single process and the whole application, respectively. Section 5 introduces the
subsystem responsible for handling checkpoints initiated inside remote method
calls. Section 6 describes fault tolerant RMI. Section 7 presents the performance
of our system. Finally, Section 8 concludes this paper.

2 Related Work

The importance of fault tolerance in grid computing has already been recog-
nised by the establishment of the Grid Checkpoint Recovery Working Group [16].
Its purpose is to define user-level mechanisms and grid services for fault
tolerance.

We are not aware of any other project that is specifically addressing the
provision of transparent fault tolerance support for grid applications written in
Java. There is, however, a considerable amount of work in various related areas.
The problem of saving the complete state of a Java program was investigated in
the context of mobile agents migration. The Nomads [17] and Sirac [5] projects
modify the JVM to capture the execution state of the application, which makes
them inappropriate for the heterogeneous grid environment where different ma-
chines may have different JVMs installed. The CIA [11] mobile agents platform
uses Java Platform Debugger Architecture (JPDA) API [1] which is not compat-
ible with most Just In Time (JIT) compilers and thus causes increased execution
overhead. The last category includes projects that insert additional instructions
to the application code. This is the case for the Brakes [8], JavaGo [15], and
Wasp [9] projects.
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3 Capturing and Reestablishing Local State

A grid application is composed of a set of (multithreaded) processes distributed
over a number of nodes, usually on one process per node basis. A local checkpoint
is then a snapshot of the local state of a process. A global checkpoint is a set of
all local checkpoints saved on nonvolatile storage to survive system failures.

The process execution state consists of the Java stacks of all local threads.
Each Java stack consists of frames that are associated with method invocations.
A new frame is pushed onto the stack each time a method is invoked and popped
from the stack when the method returns. A frame includes the local variables,
the operand stack with partial results of the computations, and the program
counter which indicates the next instruction to be executed.

A thread has access only to data stored in the currently executing method
frame due to the strict Java security policies, and therefore there is no straight-
forward way to preserve the whole Java stack. In our system we use an approach
similar to that proposed by the Brakes [8] project. The state capturing in Brakes
is initiated explicitly by placing a checkpoint function call in the application
source code. Brakes provides a post-compiler which instruments the application
bytecode by inserting additional code blocks that do the actual capturing and
reestablishing of the execution state. The Brakes bytecode transformer inserts
a code block after every method invocation, which saves in the checkpoint the
stack frame of the current method and returns control to the previous method
on the stack. This process continues until the whole Java stack is saved. The
process of reestablishing a thread’s state is similar but restores the stack frames
in reverse order. The bytecode transformer inserts code at the beginning of each
method, which restores the stack frame of the current method and invokes the
next method whose state is saved in the checkpoint, consequently restoring the
next stack frame. The process continues until the whole stack is rebuilt.

A significant improvement that we made to the original Brakes algorithm is
that we added the analysis of the methods call graph in order to detect and mod-
ify only these methods and method invocations that could lead to the execution
state capturing. This modification has been proven (see Sect. 7) to dramati-
cally decrease the number of rewritten methods and thus reduce the overhead
caused by transforming the application. The methods call analyser finds a set
of all methods in all user classes whose invocation can lead to state capturing.
Initially, the set contains just one method — the internal method that directly
initiates state capturing. In each iteration the algorithm adds to the set new
methods that can invoke methods already in the set. The algorithm stops when
no methods were added in the last iteration.

4 Capturing and Reestablishing Global State

The checkpointing mechanisms described in Sect. 3 apply only to threads running
within the same address space. We extend the applicability of our checkpointing
mechanisms to the class of distributed applications by using the coordinated
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checkpointing scheme [18]. As its name suggests, in coordinated checkpointing
all the threads running on different nodes have to synchronise before writing
their states to stable storage. Global coordination guarantees that the saved
state is automatically globally consistent [6].

The global thread coordination is performed in two phases. In the first phase
threads are synchronised locally at each node. The goal of the second phase is
to synchronise all nodes. The coordination of threads running on the same node
is performed with the help of the local coordinator, a component deployed on
each node. When a thread is ready for a global checkpoint it notifies its local
coordinator. Once all local coordinators receive confirmation from all threads
the distributed phase of the global coordination process begins. The distributed
synchronisation algorithm proposed by us is based on software trees [19]. A tree-
based barrier is known to provide excellent performance and to scale well to large
machines [14]. Although this method was originally designed for multiprocessors,
it can easily be adapted to a distributed environment.

In order to make our system not only resilient to software faults but also to
hardware faults, we replicate the checkpointed data among different machines.
This way even in a situation when a stable storage device on one of the nodes
crashes, the checkpoint can be still retrieved from a remote location.

When a failure occurs, the processes that were running on the crashed nodes
are restored from the latest checkpoint on the backup nodes. Each of the backup
nodes runs a simple service capable of obtaining the local checkpoint of a crashed
process and initiating its recovery (described in Sect. 3).

There are several situations in which the failure may be detected. First, the
user application can explicitly invoke the scanning procedure that will check
which nodes are down. Second, the failure may be detected during the global
barrier synchronisation. Third, a crash of a remote object may be discovered by
the fault-tolerant RMI described in Sect. 6. Finally, there is a dedicated thread
running on every node that checks periodically whether all remote processes are
up and running.

5 Capturing and Reestablishing Distributed Thread’s
State

To increase the level of programming transparency, we allow the programmer
to initiate the state capturing at any stage of the program execution, also when
some of the threads perform remote method calls. To our knowledge our approach
is the first to manage this problem in a completely distributed way, without
any central components. Before presenting our solution, we first explain why
saving and restoring of a state of a thread performing a remote method call is
challenging, and also introduce some terminology.

Since Java threads are bound to the virtual machine in which they were
created, a remote method execution is mapped to two different Java threads:
the client thread that initiated the call, and the server thread that executes the
remote method on the remote node. These two threads are both representatives
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for the same distributed thread of control [22, 7]. The checkpoint initiated inside a
remote method call should contain the state of both server and client threads. In
a local execution environment, the JVM thread identifier offers a unique reference
for a single computation entity. Java, however, does not offer any interfaces that
allow us to recognise two threads as parts of the same distributed thread. To
cope with this problem we extend Java programs with the notion of distributed
thread identity [22]. Propagation of globally unique identifiers allows for the
identification of local computations as parts of the same distributed computation
entity.

Using the introduced terminology we describe the idea of a distributed thread
state capturing. Each local thread in our system has an associated identity of the
distributed computation of which it is part. The identity is generated when the
distributed computation is started, that is, when the oldest local thread which is
part of the distributed computation is instantiated. The remote thread identity is
sent along with the remote method call. It is done by extending the signature of
the remote method with a parameter representing the distributed thread identity.
Now suppose that the checkpoint was requested inside a remote method call. We
start from capturing the state of the server thread which initiated the checkpoint.
The context object containing the serialized state of the server thread is stored
on the server machine under the key representing the distributed thread identity.
After its state was captured, the server thread throws a special type of exception
notifying the client thread that the checkpoint was requested. This procedure is
repeated until the contexts of all local threads have been saved. The distributed
thread state reestablishing is a reverse process.

6 Fault Tolerant RMI

A strong point of Java as a language for grid computing is the integrated support
for parallel and distributed programming. Java provides Remote Method Invo-
cation (RMI) [2] for transparent and efficient [13, 20] communication between
JVMs. However, it does not have any support for fault tolerance. Therefore, we
developed mechanisms that provide fault tolerance for the Java RMI compo-
nents. We provide a replicated RefStore server that maintains remote objects
references, mechanisms that allow remote objects and their stubs to transpar-
ently recover from a system crash, and a fault tolerant RMI registry.

The replicated RefStore server was developed for the purpose of storing re-
mote references to recovered fault tolerant remote objects. The remote reference
is a standard Java object (a component of every stub) containing the address
of the hosting node, a communication port number, and a key that together
uniquely identify the remote object. When a fault tolerant remote object re-
covers from a crash, it automatically registers its new remote reference in the
RefStore server. When a stub cannot connect to the object using its old remote
reference, it retrieves the new remote reference from the RefStore.

In order to release the programmer from the burden of detecting failures and
updating remote references, a transformation algorithm that analyses a user’s
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stub classes and automatically generates exception handlers was developed. The
exception handler is invoked when the stub cannot connect to the fault tolerant
remote object. When it happens, the recovery process is initiated. After success-
ful recovery, the stub automatically retrieves the new remote reference from the
RefStore server and reconnects to the remote object using its new location.

The Java RMI registry [2] is typically used for exchanging stubs for remote
objects. However, since the node on which the registry is running may also fail,
we provide an implementation of a fault-tolerant RMI registry service that is
checkpointed together with the whole application.

To summarize, each component of the fault-tolerant RMI system is either
replicated or checkpointed, and so there is no single point of failure. Moreover,
since no modifications in the application code are needed, our fault-tolerant RMI
is completely transparent to the programmer.

7 Performance Evaluation

In this section we study the impact of our fault-tolerance extensions on the
performance of the distributed applications. All tests were performed on the
DAS2 cluster1 of 1GHz Pentium III processors, running Linux, and connected
by a Myrinet network.

We investigate the overhead incurred by the checkpointing extensions on two
applications, namely Successive Over Relaxation (SOR) and Traveling Sales-
man Problem (TSP). These applications were selected as being challenging for
the checkpointing system. Complicated control flow scheme and non-negligible
amounts of temporary data pose difficulties for making these applications fault
tolerant manually.

SOR is an iterative method for solving discretised Laplace equations on a
grid. The program distributes the grid row-wise among the processors. Each
processor exchanges its row of the matrix with its neighbors at the beginning of
each iteration.

TSP finds the shortest route among a number of cities using a parallel branch-
and-bound algorithm, which prunes large parts of the search space by ignoring
partial routes already longer than the current best solution. We divide the whole
search tree into many small ones to form a job queue. Every worker thread will
get jobs from this queue until the queue is empty.

We measure the performance overhead during the normal execution (with-
out initiating the state capturing) introduced in these applications by the fault-
tolerance extensions. This overhead is generated by additional conditional state-
ments placed after method calls which may initiate state capturing, and by
replacing the standard Java RMI with its fault-tolerant counterpart. We argue
that the overhead caused by the extra conditional statements is negligible since
they are sensibly placed and thus rarely invoked.

1 A detailed description of the DAS2 cluster architecture can be found at
http://www.cs.vu.nl/das2



Transparent Fault Tolerance for Grid Applications 677

4 8 12 16 20 24 28
0

20

40

60

80

100

120
SOR with synchronous communication

Number of nodes

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Original execution time  
Overhead of modifications

4 8 12 16 20 24 28
0

20

40

60

80

100

120

Number of nodes

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

SOR with a pool of threads

Original execution time  
Overhead of modifications

4 8 12 16 20 24 28
0

20

40

60

80

100

120
SOR with new thread per message

Number of nodes

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Original execution time  
Overhead of modifications

4 8 12 16 20 24 28
0

5

10

15
TSP with synchronous communication

Number of nodes

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Original execution time  
Overhead of modifications

Fig. 1. The performance overhead incurred by our fault-tolerance extensions

We first asses the performance when no checkpoints are taken. Figure 1
presents the comparison of the execution times of the original and the trans-
formed applications in relation to the number of nodes used for the computation
in that case. Three variants of the SOR algorithm (for a matrix 1000x10000
and 200 iterations) and one variant of TSP (for 17 cities) were used during the
measurements. The first version of the SOR algorithm uses synchronous commu-
nication. The second version is based on asynchronous communication scheme
with a pool of threads which are reused for sending messages. The last variant
of the SOR algorithm starts a new thread for every data send request. The TSP
application uses synchronous communication.

The measurements show that overhead in SOR incurred by the fault-tolerance
extensions increases with the number of nodes. The overhead caused by the stubs
transformations is proportional to the number of remote method invocations
which is higher for larger number of nodes. The highest performance overhead
of 9% was observed for the SOR application with synchronous communication.
In the case of synchronous communication, the overhead incurred by the stubs
transformations affects directly the computation thread, thus slowing down the
whole application. The performance degradation of the asynchronous versions
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Fig. 2. The duration of the checkpointing process as a function of the checkpoint size
(left) and the number of nodes (right). Note the logarithmic scale on both axes of the
left plot

of SOR affects directly only the communication threads that are running in
the background. The highest observed performance losses in the asynchronous
versions with a thread pool and a new thread per message were 5% and 6%,
respectively. A slightly higher overhead in the latter case comes from the fact
that creating a new thread for each message requires registering this thread
in our system. The bottom-right plot of Fig. 1 presents the results of the TSP
application. The fault-tolerance extensions in this application hardly influence its
performance. The highest observed overhead was less than 2%. Since processes
do not communicate with each other as frequently as in the SOR algorithm, the
overhead caused by the fault-tolerant RMI is much lower.

We now turn to the time that is needed to take a distributed checkpoint
(Fig. 2). Clearly, capturing the state of a process that contains more data takes
longer. Similarly the number of nodes in the system is not without influence on
the overall performance of the checkpoint. The delay introduced by the global
barrier synchronisations grows with the number of nodes involved.

The left half of Fig. 2 shows how the size of the checkpointed data relates to
the time needed to take a globally consistent checkpoint of the applications run-
ning on 20 nodes (note the logarithmic scale on both axes). For the distributed
checkpoint performance evaluation we used the most complex variant of the
SOR algorithm, namely the asynchronous communication with the thread pool.
As one could expect, the time of a checkpoint can be approximated by a linear
function of the data size. The linear dependency on this logarithmic plot is how-
ever much weaker for smaller (less than 3MB) than for bigger checkpoints. For
smaller checkpoints the state capturing time is dominated by the efficiency of the
state saving extensions. Checkpoints that contain more data move the overhead
from the data serialisation to the data replication phase, which is much more
data size dependent.

The plot presented in the right half of Fig. 2 shows the influence of the num-
ber of nodes on the performance of the checkpoint. The size of the checkpointed



Transparent Fault Tolerance for Grid Applications 679

data was approximately the same for all applications — 500KB. The overhead
of the checkpointing phase is determined by two factors. The performance of
the global barrier synchronisation algorithm depends on the number of nodes
involved. Furthermore, different threads need different amount of time to cap-
ture their states. The variations of the state serialization times among different
threads accumulate resulting in considerable delays. The results of the experi-
ments show however that our system can deal with a higher number of nodes
without excessive performance loss.

As we described in Sect. 3, we optimised the original Brakes algorithm by
rewriting only those methods that may lead to the checkpoint request. We mea-
sured the performance gain due to this optimization for the SOR and TSP
applications running on 8 nodes. The number of rewritten methods was reduced
for SOR from 53 to 5 and for TSP from 37 to 2. This resulted in a performance
gain of over 10% in the case of SOR and over 30% in the case of TSP.

8 Conclusions

In this paper we have presented a complete solution for making regular grid
applications written in Java fault tolerant. The high level of programming trans-
parency and independence from a particular JVM enable easy integration with
existing applications and grid services. The experiments show that our approach
has a very low performance overhead during normal program execution, and
scales well with the system size.
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