
1

A Service-Oriented Peer-to-Peer Architecture for a
Digital Ecosystem

Jan Sacha, Bartosz Biskupski, Dominik Dahlem, Raymond Cunningham, Jim Dowling, and René Meier
Distributed Systems Group, Trinity College Dublin, Ireland

Abstract— Service-oriented computing is becoming an increas-
ingly popular paradigm for modelling and building distributed
systems in heterogeneous, decentralised, and open environments.
However, proposed service-oriented architectures are usually
based on centralised components, such as service registries or
service brokers, that introduce reliability, management, and
performance issues. In this paper, we present a fully decentralised
service-oriented architecture built on top of a self-organising
peer-to-peer infrastructure. This architecture is especially de-
signed to support digital ecosystems due to its low deployment
and maintenance cost and inherently decentralised nature.

INTRODUCTION

Service-Oriented Computing (SOC) is a paradigm where
software applications are modelled as collections of loosely-
coupled, interacting services that communicate using stan-
dardised interfaces, data formats, and access protocols. The
main advantage of SOC is that it enables interoperability
between different software applications running on a variety
of platforms and frameworks, potentially across administrative
boundaries. This is especially important in digital ecosystems,
where the environment is decentralised, open, and heteroge-
neous, as SOC can facilitate software reuse and automatic
composition and fosters rapid, low-cost development of dis-
tributed applications.

A Service Oriented Architecture (SOA) usually consists of
three elements: a service provider that publishes and maintains
a service, a service consumer that uses the service, and a
service registry that allows service discovery by prospective
consumers [1], [2]. In many proposed SOAs, the service reg-
istry is a centralised component, known to both publisher and
consumer, and is usually based on the UDDI protocol. More-
over, many existing SOAs rely on other centralised facilities
that provide, for example, support for business transactions,
service ratings or service certification [2].

However, each centralised component in a SOA constitutes
a single point of failure that introduces security and reliability
risks, and may limit the systems scalability and performance.

An approach to decentralise a SOA is to employ a
Peer-to-Peer (P2P) infrastructure. A P2P infrastructure is an
application-level overlay network, built on top of the Internet,
where the responsibilities of nodes are approximately equal. In
particular, there is no distinction between clients and servers
as all nodes provide services to each other as peers. The P2P
paradigm allows the construction of systems with a very large
size and very high robustness, mainly due to their inherent
decentralisation and redundant structures. Furthermore, P2P

systems enable the utilisation of resources on a large number
of machines connected to the system through the Internet.

The P2P approach is especially promising in heteroge-
neous and decentralised digital ecosystems, where smaller or
medium-sized enterprises often cannot afford high costs of the
hardware and software required to build large-scale systems.
Self-managing and self-organising P2P technologies allow a
number of smaller enterprises to collaborate with each other
and to share the costs of system deployment and maintenance.

However, the construction of P2P applications poses a
number of challenges to system designers. Recent research
[3] shows that in existing P2P systems nodes frequently join
and leave, generating high churn rates, and that unreliable
communication in wide-area networks cause large delays in
message passing between peers. Measurements also show
that many peers suffer from poor network connectivity, poor
availability, or low performance [4], [5]. Furthermore, the
decentralisation, large scale, and dynamism of P2P systems
introduce distributed decision making problems.

In this paper, we propose a fully decentralised, large-scale
SOA based on a self-organising P2P infrastructure. The main
contributions of the paper are the design of the proposed
SOA, and a prototypical implementation and evaluation of the
underlying P2P infrastructure. Our initial evaluation shows that
our approach is scalable and resilient to high peer churn rates
and random failures.

The remainder of this paper is organised as follows. In
section II, we analyse the requirements for a decentralised
SOA and we present an overview of our architecture. The
architecture is based on two P2P overlay topologies, the gra-
dient topology overlay and the distributed hash table overlay,
that we describe in detail in sections III and IV, respectively.
In section V, we describe the evaluation of our approach. In
section VI, we review related work, and in section VII, we
conclude the paper.

ARCHITECTURE OVERVIEW

In a Service-Oriented Architecture, the users can be as-
signed two roles: a service provider or a service consumer
(also called service customer). At the highest level of gener-
ality [1], [2], a SOA provides the following use cases.
• Publish : Introduction of a new service to the system by

a service provider.
• Find : The discovery and selection of a service of interest

to the consumer from the set of all services in the system.
• Bind : The usage of a service by a service customer.



2

Fig. 1. Service registration (1-4), discovery (A-B), and consumption (C-D).

In addition, SOAs usually allow service deregistration by a
provider, and may support a service lease mechanism, where
every registered service is assigned a lease and a service is
automatically removed from the registry when its lease expires.

In this paper, we describe a decentralised service-oriented
architecture, based on a self-organising P2P network, that
supports the above use cases. The P2P infrastructure consists
of two P2P overlays, the Distributed Hash Table (DHT)
overlay, and the Gradient Topology (GT) overlay, with an
additional pool of bootstrap servers used for peer initialisation.
The gradient topology overlay allows service registration and
discovery through a decentralised service registry, while the
DHT overlay enables service consumption (see Figure 1).

Our analysis of the SOA requirements shows that the two
different P2P overlays are needed for an efficient, decentralised
SOA implementation. The gradient topology allows efficient
selection of the most suitable peers in the P2P system to
maintain a decentralised service registry. This is important,
since measurements on deployed P2P systems show that peer
characteristics, such as peer uptime, bandwidth, or available
storage space, are highly variable, and often heavy-tailed or
scale-free [4], [5], and the usage of low stability or low
performance peers can lead to a poor performance of the entire
system [3]. Furthermore, research on decentralised search
techniques shows that handling complex search queries in
highly decentralised systems is very expensive [6], and hence,
more centralised approaches to data storage can offer better
performance. The gradient topology allows to exploit the
resource heterogeneity in a P2P system, and improve search
performance, by placing the SOA registry on a subset of the
most reliable peers.

The DHT overlay, unlike the gradient topology, provides
an efficient and reliable routing algorithm between any two
peers in the system. This allows a nearly-uniform distribution
of system resources, such as data, user requests, etc., between
a group of peers. Furthermore, DHTs support resource repli-
cation between peers.

Figure 1 shows a high level picture of our P2P architecture.
In order to publish a service, the service provider uses the
gradient topology to discover an instance of the service registry
(1), registers the service (2), generates a service proxy (3), and
uploads the proxy using the DHT overlay (4). The service
proxy is an object that contains service configuration infor-
mation, such as the service access protocol, service address,
and potentially, service graphical user interface (GUI). Service
deregistration follows a similar procedure, where the provider
removes the service proxy from the DHT and removes service
description from the registry.

In order to discover a service, the consumer uses the
gradient topology to discover an instance of the service registry
(A), as in the service registration scenario, and queries the
registry for available services that satisfy some criteria (B).
The registry returns a list of semantic service descriptions that
satisfy the specified search criteria. The consumer may then
select one of the available services and consume it. Service
consumption involves service proxy download from the DHT
overlay (C), using a unique service identifier contained in the
service description, and service invocation through the service
proxy (D), potentially using a graphical interface.

A service proxy hides the service implementation details
from the service consumer, such as the communication pro-
tocol, encryption settings, or the end-point address, from the
service consumer, and enables full service transparency. The
provider can change the service configuration transparently
from the consumer by updating the service proxy. Further-
more, the DHT overlay provides a lease and automatic clean-
up mechanism that removes stale proxies from the system.
This allows service consumers to avoid waiting for the service
invocation timeout when the service is unavailable, since the
DHT does not store proxies of unavailable services.

GRADIENT TOPOLOGY

In this section, we describe the design of the gradient P2P
topology, and we show how this topology is used to support
a decentralised service registry.

In the gradient P2P topology, each peer is assigned a utility
value and the highest utility peers are connected with each
other and form the so called core of the system, while lower
utility peers are located gradually farther from the core. Peer
utility is a metric that measures the ability of a peer to con-
tribute resources and maintain system infrastructural services,
such as the SOA registry. The key property of the gradient
topology is that it enables an efficient search algorithm, called
gradient search, that allows the discovery of the highest utility
peers in the system.

In our approach, the SOA registry is distributed between a
number of peers in the system for reliability and performance
reasons. Hence, there are two types of peers: super-peers
that host registry replicas, and ordinary peers that maintain
no replicas. A utility threshold is defined as a criteria for
registry replica placement, i.e., peers with their utility above
the selected threshold host registry replicas. Figure 2 shows
a sample P2P gradient topology, where the service registry is
located at the core peers determined by the replica placement
threshold.



3

Fig. 2. SOA registry replication and discovery in the gradient topology.
Peers A, B, and C access registry replicas, hosted by peers in the core, using
gradient search.

Peer utility is defined as a function of peer’s local pa-
rameters, such as available storage space, bandwidth, latency,
CPU performance, average availability, and open IP address.
Each of these parameters can be calculated by a peer locally,
without the use of global system knowledge. However, setting
appropriate replica placement thresholds is more challenging,
as it requires the estimation of system-wide characteristics of
peer utility values in order to know what constitutes high
utility in a running system. If the utility threshold is static
(e.g. hardwired), it may happen that no peer in the system has
utility above the threshold, or that the threshold is very low and
hence sub-optimal. Moreover, due to the system’s dynamism,
the utility threshold should be continuously adapted to the
system’s current state and peer availability.

In the gradient topology, peers periodically execute a de-
centralised aggregation algorithm that allows the estimation
of system-wide peer utility characteristics. The aggregation
algorithm continuously maintains estimates of the following
global system properties: the current number of peers in the
system, N , the maximum peer utility in the system, Max,
and a cumulative histogram of peer utility values, H . The
cumulative utility histogram with B bins of width w is defined
as

H(i) =
∣∣∣{p | U(p) ≥ i · w}

∣∣∣
for i ≤ i ≤ B, where U(p) is the utility of peer p. The his-
togram approximates the cumulative peer utility distribution,
D, in B points, i.e., H(i) = D(i · w) for i ≤ i ≤ B, where
D is defined as

D(u) =
∣∣∣{p | U(p) ≥ u}

∣∣∣.
The aggregation algorithm is executed periodically by every

peer in the system and is based on gossipping [7]. At one
step of the algorithm, a peer sends a message to a random
neighbour, and receives messages sent by neighbours in the
previous step. A sequence of steps, called an aggregation

epoch, leads to a new approximation of N , Max, and H .
The details of the aggregation algorithm are described in [8],
and due to space limitations, are not covered in this paper.

Peers use the aggregates to calculate the adaptive utility
thresholds. We define the top-k threshold, as a utility value,
tk, such that K highest utility peers have their utilities above
or equal tk, and all other peers have utilities below tk. Given
the utility distribution function, D, the threshold is described
by formula

D(tk) = K.

Top-k threshold allows the restriction of the number of
replicas in a dynamic system, where peers are continuously
joining and leaving, since it has the property that exactly K
peers in the system are above the threshold. Top-k threshold
can be estimated using a B-bin and w-width utility histogram,
H , by

tk ≈ w ∗ max
1≤i≤B

(H(i) ≥ K).

Similarly, we define the proportional threshold, as a utility
value, tF , such that a fixed fraction F of peers in the system
have their utility values above or equal tF and all other peers
have utilities below tF

D(tp) = F ∗N

where N is the number of peers in the system. The propor-
tional threshold can be approximated using a utility histogram

tk ≈ w ∗ max
1≤i≤B

(H(i) ≥ F ∗N).

As the system grows or shrinks in size, the proportional
threshold has an advantage over the top-k threshold, as the
number of replicas in the system is increased or decreased
accordingly, and the ratio of replicas to ordinary peers remains
constant.

In order to generate and maintain the gradient topology,
each peer periodically executes a self-organising neighbour
selection algorithm [9]. The neighbourhood set of a peer p
consists of two parts: a similarity-based set, Sp, that contains
neighbours with similar utility to peer p, and a random set,
Rp, that contains a random sample of peers in the system.
The former set generates the gradient topology structure and
enables gradient search, while the latter set improves the
topology’s robustness, reducing the partition probability to a
negligible value, and decreases the network diameter. Random
set is also used by the aggregation algorithm for gossipping.

In addition to the neighbour sets, a peer p maintains a
cache Up that stores an estimated utility value, Up(q), for each
neighbour q.

The gradient structure of the topology allows an efficient
search heuristic, called gradient search, that enables the dis-
covery of high utility peers in the system. The goal of the
search algorithm is to deliver a message from any peer in the
system to a high utility peer in the core, i.e., to a peer with its
utility above a given threshold. In gradient search, each peer
greedily forwards messages to its highest utility neighbour,
i.e., to a neighbour q whose utility is equal to

maxx∈Sp∪Rp

(
Up(x)

)
.



4

Thus, messages are forwarded along the utility gradient, as
in hill climbing and other similar techniques. The algorithm
exploits the information contained in the topology to limit
the search space to a relatively small subset of peers and to
achieve a significantly better search performance than tradi-
tional search techniques, such as flooding or random walking
that require the communication with potentially all peers in the
system [9]. Gradient search also reduces message loss rate by
preferentially forwarding messages to high utility, and hence
stable, peers.

In order to determine which peers in the gradient topology
host SOA registry replicas, each peer periodically calculates
the replica placement threshold, using the aggregates provided
by the aggregation algorithm, and compares it with its own
utility. If a peer’s utility is higher than the replica placement
threshold, the peer creates a local replica. The replica is re-
moved, when the peer’s utility falls below the replica removal
threshold.

In order to access the SOA registry, a peer that does not
store a local replica calculates the replica placement threshold,
using the utility histogram, and performs gradient search that
returns the address of a peer above the threshold that stores a
registry replica.

The registry replica synchronisation is handled by higher
level protocols on top of the gradient topology. Since the
number of registry replicas is significantly lower than the total
number of peers in the system, it is possible for the registry
to maintain a full list of all replicas in the system. Updates
on the registry may be reactively propagated between all
replicas when issued, or may be timestamped and periodically
disseminated using a gossip algorithm. Such a gossip-based
approach is further facilitated by the fact that the replicas are
hosted by high utility, stable, and well-connected peers located
at the core of the gradient topology.

DISTRIBUTED HASH TABLE

This section describes the Distributed Hash Table (DHT)
overlay and its usage for service proxy storage.

A DHT is a P2P system that distributes values, such as
objects, chunks of data, system resources, or user requests,
between peers in the system. Each value is associated with
a key, and the system provides an efficient and deterministic
mapping from keys to values. DHTs support three operations:
an insert operation that associates a given key with a given
value and stores the key-value pair on a peer in the system;
a lookup operation that retrieves the value associated with a
given key; and a delete operation that removes from the system
a given key together with its associated value.

Every peer in a DHT is assigned a unique identifier and
is responsible for the maintenance of a part of the key space.
Usually, a peer is responsible for the keys that are numerically
closest to its own identifier.

The three operations, insert, lookup, and delete, require
multi-hop routing between peers to access keys and values
stored by the system. Typically, DHTs support routing from
a peer to any other peer in the system in O(logN) overlay
hops, while every peer maintains O(logN) neighbours, where
N is the number of peers in the system.

Fig. 3. Peer 0000 sending messages to peers 0111 and 1100.

A number of DHT topologies have been proposed, where
the earliest and most popular to date systems include Chord
[10] and Pastry [11]. An open-source implementation of
Pastry, called Bamboo [3], is available and has been deployed
on a global P2P testbed called PlanetLab [12]. Bamboo has
been shown to handle higher peer churn rates than other state-
of-the-art DHT systems [3].

In Bamboo, each peer is assigned a 160-bit unique identifier
that is generated randomly when the peer joins the system.
Randomisation ensures that peer identifiers are uniformly
distributed in the key space, which provides natural load-
balancing between peers and ensures that no peer becomes
a bottleneck in the system. A peer identified by id selects the
neighbours at position i in its neighbourhood table in such a
way that the identifiers of these neighbours share a prefix of
length i with id. This neighbour selection algorithm generates
a topology structure that allows efficient routing between peers
and guarantees the worst case cost of insert, lookup, and delete
operations to be O(logN) messages.

Message routing is performed in the following way. At the
first hop, a message is forwarded to a peer whose identifier has
the same first digit as the message destination d. At the second
hop, the message is forwarded to a peer whose identifier has
the same two leading digits as d. At hop i, the message
is forwarded to a peer whose identifier shares a prefix of i
digits with d. This way, the message is guaranteed to reach
destination d in O(logN) hops. Figure 3 shows an example
scenario where peer 0000 is routing two messages to peers
0111 and 1100 respectively.

In the service-oriented architecture presented in this paper,
the DHT overlay is used for service proxy storage. Each proxy
is associated with a unique service identifier, generated by the
service registry, that allows the proxy upload, download, and
removal. Furthermore, the Bamboo overlay supports a lease
mechanism that sets a lease duration for every proxy stored
in the DHT and that automatically removes proxies that have
expired, i.e., proxies that have not been renewed by the service
provider before the lease expiry time. This mechanism ensures
that the proxies stored in the system are up to date.

Moreover, for reliability and performance reasons, each



5

proxy is replicated on a number of peers. Bamboo supports a
replication algorithm, where each value stored by the system,
such as a service proxy, is stored by K peers that have
numerically closest identifiers to the key associated with the
replicated value.

Future work will investigate the usage of the DHT overlay
to store additional SOA information, such as user public keys
and service certificates, and to route service invocation and
response messages over the DHT.

EVALUATION

This section describes our initial evaluation of the proposed
architecture. In the following two subsections, we evaluate
the main two components of the architecture, the gradient
topology overlay and the distributed hash table overlay.

Gradient Topology Evaluation

We evaluate the algorithms used in the gradient topology
by performing experiments in which we measure the precision
of the aggregation algorithm and the performance of gradient
search. We measure the average error in histogram estimation,
ErrH , number of peers in the system estimation, ErrN ,
and the maximum utility estimation, ErrMax. In the same
experiments, we compare the performance of gradient search
with random walking [13], [14]. For both search algorithms,
we measure two properties. We calculate the average number
of hops in which the algorithms deliver a search message from
a random peer in the system to a high utility peer above 1%
utility threshold, and we measure the search failure rate, i.e.,
the percentage of search messages that are lost.

The results of our experiments show that the aggregation
algorithm offers a good approximation of the system properties
and that gradient search exhibits significantly better perfor-
mance than random walking, in terms of both number of hops
and failure probability.

Due to space limitations in this paper, we can only give a
brief overview of our experiments. A detailed description of
the experiments can be found in [8] and [9].

We ran our experiments on a Pentium 4 machine using a
Java-based discrete event simulator, which we developed in
order to evaluate our P2P algorithms. An individual experi-
ment consists of a set of peers, connections between peers,
and messages passed between peers. We assume all peers
are mutually reachable, i.e., any pair of peers can establish
a connection. We also assume that it takes exactly one time
step to pass a message between a pair of connected peers.
We do not model network congestion, however, in order to
reflect network heterogeneity, we limit the maximum number
of concurrent peer connections according to Pareto distribution
(power law).

The simulated P2P network is under constant churn. Every
peer is assigned a session duration determined probabilistically
with Pareto distribution, where the expected session time is
inverse proportional to the simulated peer churn rate. When
leaving the system, 10% of peers do not perform the leave
procedure, i.e., they crash. Furthermore, a centralised server
is used to bootstrap peers that are joining the system.

Fig. 4. Average estimation error of the number of peers in the system (N),
maximum utility (Max), and the utility distribution (Histogram) as a function
of peer churn rate.

Fig. 5. Average route length (hop count) when searching for peers above
the utility threshold. Gradient search is compared with random walking.

We start each individual experiment from a network con-
sisting of a single peer. The number of peers is increased by
one percent at each time step, until the network grows to the
size specified for the experiment. Afterwards, the network is
still under continuous peer churn, however, the rate of arrivals
is equal to the rate of departures and the number of peers in
the system remains constant. Each peer periodically performs
the neighbour selection, aggregation, and routing algorithms at
every time step of the simulation. Additionally, at each step,
a number of randomly selected peers emit search messages
that are routed using gradient search or random walking. All
peers attempt to either deliver search messages they hold in
the buffers, if their utility is higher than the specified search
threshold, or forward messages to neighbours selected by the
current search policy. Messages are lost if their TTL value
drops to zero, or if the peer that stores them in its buffer
leaves the system.

Figure 4 shows the average relative error of the aggregation
algorithm, ErrN , ErrMax, and ErrH , as a function of the
peer churn rate. The variance is not shown as it is approxi-
mately two orders of magnitude lower than the plotted values.
The maximum average error does not exceed 20% for the
highest churn rates.

Figure 5 shows the average hop count of search messages
delivered to peers above the utility threshold as a function of
the number of peers in the system. Figure 6 shows the average
failure rate when searching for peers above the utility threshold
as a function of peer churn rate. Both figures demonstrate



6

Fig. 6. Average failure rate when searching for peers above the utility
threshold. Gradient search is compared with random walking.

superior performance of gradient search over random walking.

Distributed Hash Table Evaluation

A number of Distributed Hash Table systems have been
analysed, including Chord [10], Pastry [11], and Symphony
[15], and DHTs have been shown in both theoretical and
experimental evaluations to exhibit good performance and
stability in the presence of high peer churn. In particular, DHTs
usually provide routing between any peers in the system in
O(logN) hops, given the system size N . Many DHTs have
also demonstrated scalability to millions of participating peers.

The evaluation of Bamboo is described in [3]. Research
has shown that Bamboo can achieve better performance and
higher resilience to peer churn than other existing state-of-the-
art DHT systems.

RELATED WORK

An approach to web service discovery that uses a decen-
tralised search engine, based on a P2P network, is described
in [16]. In this approach, services are described by a set of
keywords and positioned in a multi-dimensional space that is
mapped onto a DHT and partitioned between peers. A similar
approach, described in [17], partitions the P2P system into a
set of ontological clusters, using a P2P topology based on
hypercubes, in order to efficiently support complex search
queries. However, both these approaches are based on P2P
networks that do not reflect peer heterogeneity in the system,
unlike our gradient topology, and do not address the problem
of high utility peer discovery in a decentralised P2P envi-
ronment. A number of general search techniques have been
developed for unstructured P2P systems (e.g., [13] and [14]),
however, these techniques do not exploit any information
contained in the underlying P2P topology, and hence achieve
lower search performance than the gradient heuristic that takes
advantage of the gradient topology structure.

CONCLUSIONS

In this paper, we have proposed a decentralised service-
oriented architecture built on top of a self-organising peer-to-
peer infrastructure. The P2P infrastructure consists of a gra-
dient topology that enables the selection of the most suitable
peers for a service registry maintenance, and a distributed hash

table overlay that is used for service proxy storage. Service
proxies encapsulate service access points, communication pro-
tocols, and graphical interfaces. The P2P infrastructure allows
an efficient implementation of the SOA operations, i.e., service
registration and deregistration by the service provider, and
service discovery and consumption by the service consumer.
Our evaluation shows that the proposed P2P infrastructure
scales to a large number of peers and can successfully manage
high peer churn rates.

ACKNOWLEDGEMENT

The work described in this paper was partly supported by the
"Information Society Technology" Programme of the Commission of
the European Union under research contract IST-507953 (DBE).

REFERENCES

[1] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key
concepts and principles,” IEEE Internet Comput., vol. 9, no. 1, pp. 75–
81, January 2005.

[2] M. P. Papazoglou, “Service-oriented computing: Concepts, character-
istics and directions,” in Proc. of the 4th Int. Conference on Web
Information Systems Engineering, 2003, pp. 3–12.

[3] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a
dht,” in Proc. of the USENIX 2004 Annual Technical Conference, 2004,
pp. 127–140.

[4] S. Sen and J. Wong, “Analyzing peer-to-peer traffic across large net-
works,” IEEE/ACM Trans. Networking, vol. 12, pp. 219–232, 2004.

[5] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan, “Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload,” in Proc. of Symposium on Operating Systems
Principles, 2003, pp. 314–329.

[6] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. R. Karger, and
R. Morris, “On the feasibility of peer-to-peer web indexing and search,”
in Proc. of the 2nd Int. Workshop on Peer-to-Peer Systems, ser. LNCS,
no. 2735. Springer, 2003, pp. 207–215.

[7] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” in Proc. of the 44th IEEE Symposium on
Foundations of Computer Science, 2003, pp. 482–491.

[8] J. Sacha, J. Dowling, R. Cunningham, and R. Meier, “Using aggregation
for adaptive super-peer discovery on the gradient topology,” in Proc. of
the 2nd IEEE Int. Workshop on Self-Managed Networks, Systems &
Services, ser. LNCS, no. 3996. Springer, 2006, pp. 77–90.

[9] J. Sacha, J. Dowling, R. Cunningham, and Meier, “Discovery of stable
peers in a self-organising peer-to-peer gradient topology,” in Proc. of the
6th IFIP Int. Conference on Distributed Applications and Interoperable
Systems, ser. LNCS, no. 4025. Springer, 2006, pp. 70–83.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 149–160, 2001.

[11] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Proc. of
the 18th Int. Conference on Distributed Systems Platforms. Springer,
2001, pp. 329–350.

[12] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: An overlay testbed for broad-coverage
services,” Comput. Commun. Rev., vol. 33, no. 3, pp. 3–12, July 2003.

[13] B. Yang and H. Garcia-Molina, “Improving search in peer-to-peer net-
works,” in Proc. of the 22nd Int. Conference on Distributed Computing
Systems. IEEE, 2002, pp. 5–14.

[14] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and repli-
cation in unstructured peer-to-peer networks,” in Proc. of the 16th Int.
Conference on Supercomputing. ACM, 2002, pp. 84–95.

[15] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed
hashing in a small world,” in Proc. of the 4th USENIX Symposium on
Internet Technologies and Systems, 2003, pp. 127–140.

[16] C. Schmidt and M. Parashar, “A peer-to-peer approach to web service
discovery,” World Wide Web, vol. 7, no. 2, pp. 211–229, June 2004.

[17] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “A scalable and
ontology-based p2p infrastructure for semantic web services,” in Proc.
of the 2nd Int. Conference on Peer-to-Peer Computing, 2002, pp. 104–
111.


