
Managing Peer-to-Peer Live Streaming

Applications

Raymond Cunningham, Bartosz Biskupski, and René Meier

Distributed Systems Group,
Department of Computer Science,

Trinity College Dublin

Abstract. A number of p2p live streaming systems [1], [2], [3], [4], [5],
[6] and [7] have been proposed in recent years. Typically, the description
of these systems focuses on how the live stream is transmitted from its
source to a number of viewers within the particular p2p network and
how these systems deal with the failure of one or more viewers during
transmission of the stream. An important aspect of each of these sys-
tems that is typically overlooked is how individual stream transmitters
and viewers of these streams are managed in terms of registration, con-
figuration and maintenance. In this paper, a set of management related
abstractions common to many p2p live streaming systems are identified.
This paper describes the MeshTV architecture, capturing these abstrac-
tions, to simplify the management of p2p live streaming applications.
The architecture has been evaluated through a number of experiments
and has been assessed against existing related work.

1

1 Introduction

A number of Peer-to-Peer (p2p) live streaming systems [1], [2], [3], [4], [5], [6]
and [7] have been proposed in recent years. Typically the description of these
systems focuses on how the particular live stream is transmitted, for example,
whether it uses an underlying tree based or mesh based topology and/or the
assumptions made about the underlying network infrastructure (such as updates
to intermediate network level routers, etc).

In contrast, this paper focuses on an architecture and the corresponding
abstractions needed to ease the deployment and ongoing management of an
application-level p2p live streaming system. Our architecture does not make
any assumptions about the underlying network layer routing infrastructure. In

1 c©Springer-Verlag, (2008). This is the author’s version of the work. The origi-
nal publication is available at www.springerlink.com. It is posted here by permis-
sion of Springer-Verlag for your personal use. Not for redistribution. The defini-
tive version was published in Lecture Notes in Computer Science, 5053, 2008
http://dx.doi.org/10.1007/978-3-540-68642-2 12

general, the abstractions common to p2p live streaming systems can be broken
into a number of categories:

– Coordination
– Management
– Communication

The coordination category comprises a number of use cases such as the reg-
istration of participating peers (both a transmitter and one or more viewers)
which is typically not described in existing p2p live streaming systems. In ad-
dition, how the ongoing configuration of these participating peers is achieved is
typically not described. An underlying assumption of most live streaming p2p
overlay based systems is that the total system upload (i.e., the sum of the upload
capacities at all peers) can be utilised correctly to enable all peers to download
the stream at the stream rate at which the transmitter transmits. Thus, it is
important for a running system to be able to verify this latter assumption.

The management category includes a number of different aspects of a p2p
live streaming application such as the gathering of relevant statistics related to
the live stream and the enforcement of a revenue model for a particular stream.
These aspects are typically overlooked in favour of ensuring that the p2p live
streaming system maximises a global system parameter such as the total upload
utilisation. However, the particular system is typically unaware of what the total
system upload capacity actually is.

The final abstraction covers the lower level management related issues of
communicating the live stream from a transmitter to a number of interested
viewers. Typically, how bootstrapping is achieved in most systems is not covered
in detail as it is assumed to be a solved problem. However, the solution to
this problem depends on the number of current peers in the system and the
percentage of the peers that are joining and/or departing the system.

These abstractions and how they relate to the MeshTV architecture will be
further elaborated in section 2. Section 2 is followed by a description in section
3 of a realisation of the lowest layer of the architecture and an evaluation of this
realisation in section 4. These sections are followed by an assessment of related
work and how this work fits into the MeshTV architecture in section 5. Finally,
section 6 concludes the paper and discusses future work.

2 MeshTV Architecture

As illustrated in Figure 1, the MeshTV Architecture is broken into a number
of layers corresponding to the categories identified in section 1. The upper most
layer of the architecture is called the Stream Coordination layer and enables po-
tential viewers of a particular stream to discover the stream (typically by brows-
ing a list of streams) that a transmitter is transmitting or intends to transmit
and for the particular peers that are providing the stream to be easily configured
throughout the lifetime of the stream.

Fig. 1. MeshTV Architecture

2.1 Coordination

Before a transmitter can begin transmitting a live stream, it is required to reg-
ister its details (such as type of content, point of contact for the stream (i.e.,
underlying mesh/tree component endpoint), start time of transmission, etc) so
that potential viewers of the stream can become aware of this stream. The reg-
istration of a particular stream occurs at a logically centralised stream manager
that can record relevant details about the stream for later querying by interested
potential viewing peers. Note that how to secure the registration of a transmitter
(and a potential viewer) will not be addressed in this paper though a number of
possible approaches exist such as [8] and [9].

As will be seen in the following sections, this logically centralised stream
manager plays an important role in a number of the abstractions identified in
this paper.

When the transmitter registers its information with the stream manager,
the stream manager records information related to the transmission with the
statistics management component and then generates a billing profile for the
future transmission of the content by using the lower layer revenue management
component. This profile may allow advertisements to be tailored to the content
of a particular transmission or the transmitter may require a potential viewer to
pay to watch its particular transmission.

In general, the configuration of the different components that constitute a
live streaming application should be configured in one of two ways, depending on

the number of peers in the topology. Firstly, when the number of nodes is below
a known threshold configuration may be carried out directly by a particular
peer such as the transmitter contacting each of the viewing peers directly to
adapt their operation. For example, if the transmitter wishes to switch to a
newer codec (to reduce bandwidth consumption) while transmitting using an
older codec, the transmitter may contact each individual viewing peer aware
of this change (assuming that the number of viewing peers is relatively small).
Secondly, if the number of viewing peers is above the threshold, configuration
could be carried out using a gossip protocol ([10], [11], [12]) to spread the burden
of configuration across all the peers in the system.

This dual mode of operation for the configuration of different aspects of a
peers behaviour is important as existing live streaming systems do not highlight
how such configuration is achieved and focus on the operation of these when
a certain number of participating peers are in the system. The approach to
configure/tune a live streaming system with a total of 100 peers can be very
different from a system with 1,000 peers which in turn can be different from a
system with 10,000 peers.

An important part of the configuration/reporting component of the MeshTV
architecture is how bandwidth related information/statistics (such as total up-
load bandwidth utilisation) is reported. For example, the total upload bandwidth
utilisation is an important global system property that existing mesh based sys-
tems and multi-tree systems attempt to maximise. A human manager or a real-
isation of the MeshTV architecture may use this bandwidth related information
to change relevant protocol parameters to better adapt to the current dynamic
environment within which the particular stream is being transmitted.

In a similar way to how system wide configuration is achieved, the collection
of bandwidth related statistics would also have a dual mode of operation with
direct point to point communication being used for the live streaming systems
with a small number of peers and aggregation [13], [14], [15] (with an underlying
gossip protocol) being using for larger systems. This second (and more complex)
approach using a number of aggregation rounds may be initiated by any peer in
the system gossipping an initial aggregation message to its set of neighbours that
then gossip this message onto their neighbours. As the aggregation message con-
taining the aggregated statistics propagates throughout the system, each peer
on receiving the aggregation message updates these statistics with local infor-
mation related to its bandwidth usage. These local bandwidth related statistics
are maintained by the statistics component of the management layer.

2.2 Management

There are two main parts in the management layer of the MeshTV architecture.
As briefly discussed in the previous sub-section, the statistics management com-
ponent is responsible for aggregating important statistics related to the trans-
mission of the stream such as, for example, the total number of peers, the total
amount of bandwidth downloaded at all peers and the average neighbour degree
of each peer throughout the system. This statistical information could be used

locally by the peer or be used to inform other peers (such as joining peers) about
the state of the system.

An additional capability of the statistics component is to build a model of how
the lower communication layer uses the peers upload bandwidth as the stream
is transmitted. This upload bandwidth model would depend on the character-
istics of a particular peer’s set of neighbours and may require the peer to learn
how much upload bandwidth it can currently offer to the overall live streaming
system.

The second part of the management layer is the revenue component whose
role is to ensure that a particular revenue model for the stream is enforced. There
are a large number of possible revenue models for a stream that are possible such
as one based on advertisements, a single advance up front payment or a split
revenue model with the first number of minutes free followed by micro-payments
for each subsequent minute of viewing.

Note that some of these revenue models require registration of the viewing
peer while others may not. A transmitter may wish to change the revenue model
of its stream based on the current demand with one revenue model being used
at the beginning of a stream’s transmission before being switched to another
revenue model as demand increases.

The commencement of a stream is recorded with a local and/or remote statis-
tics component before retrieving optional adverts from a local and/or remote rev-
enue component. In the remote case, this information is recorded with the stream
manager. The stream manager uses this information to provide a list of possible
streams that can be viewed. Before returning this list of streams, the stream
manager retrieves relevant statistics of the currently available streams (possibly
using a profile of the viewing peer). Relevant statistics for a stream may in-
clude the current bandwidth consumed most recently by the stream, the current
stream rate and number of viewers that are currently watching the stream.

In addition to the above statistics, the stream manager also retrieves details
related to the cost of viewing each stream in the list of streams. This should
allow different types of pricing to be achieved based on the type of viewer that
is requesting the stream.

2.3 Communication

In this section, a number of lower level abstractions are presented that are related
to the transmission and reception of the live stream.

After registering its details with the stream manager, the transmitter begins
transmitting its content by sending it to the communication layer in the MeshTV
architecture as illustrated in Figure 1. The mesh/tree component is considered
as a decentralised component (which we consider as a single logical component
for the purposes of this document) that manages the distribution of the stream
content from the transmitter to the other viewing peers that are participating in
the mesh/tree. Note that this distribution can be done over either a tree-based
or mesh-based topology such as those covered in section 5.

Sending the content to the underlying topology requires that the mesh/tree
component has a list of other peers to which it can transmit. When a transmitter
begins to transmit the stream, the mesh/tree component of the transmitter
contacts the bootstrap component of the communication layer to initialise a new
mesh or tree for the transmission that is about to start. This in turn results in a
mesh or tree peer being created that represents the transmitter on the underlying
topology. The mesh/tree component (on the transmitter) then initialises its list
of neighbouring nodes to be empty.

It is possible for the above steps to happen when a peer indicates its intention
to transmit a stream during registration. This allows the underlying topology to
be setup with an initial set of viewing peers before the stream begins transmission
and possibly reduces the latency at the beginning of the transmission. This
bootstrap component is considered as a logically centralised component that
could be hosted or maintained by the transmitter or could be distributed across
a number of peers.

When a MeshTV viewer chooses a particular stream from the stream man-
ager, the stream manager records the addition of a new viewer with the statistics
manager and then verifies with the revenue component that the viewer has the
requisite credentials to view the stream. Thus depending on the type of stream
that is of interest, the viewer may or may not need one or more components
(such as the registration or revenue components). In a similar way to the trans-
mitter initiating the mesh/tree component for the transmission of its content,
the mesh/tree component (on behalf of a viewer) must also join the mesh/tree
by utilising the services of the local bootstrap component. Firstly, the mesh/tree
component sends a request to join the topology (previously created by the trans-
mitter) to the bootstrap component for that topology which in turn results in
the creation of a new peer on the topology that represents the joining viewer. As
a result of this request, the mesh/tree component receives a number of potential
neighbours that it then uses to initialise its neighbourhood.

A common abstraction that a number of live streaming systems use is that of
a neighbourhood of peers that an individual peer uses to transmit the stream to
and/or to receive the stream from. In the MeshTV architecture, the neighbour-
hood component provides functionality to ease the burden on a particular peer of
maintaining a set of neighbouring peers such as providing one or more techniques
for the detection of a failed neighbouring peer. In addition, the neighbourhood
component can easily maintain a profile of the communication (bandwidth) ca-
pacity of each of its neighbouring peers which can then be used to inform the
decision making of the mesh/tree component.

Finally, the neighbourhood component can be used in conjunction with the
gossip component to provide the capability to communicate with all the peers in
a large-scale system. This communication could be achieved over a specialised
random mesh network or using the existing topology that is already in use by
the live stream.

3 MeshTV Peer-to-Peer Protocol

In this section we show how the communication component of the MeshTV
architecture can be realised using an existing p2p protocol. Complete details of
this p2p protocol are available in [16]. In the following subsections we present
each communication subcomponent in our system.

3.1 Mesh

The mesh overlay is formed by joining peers connecting to randomly selected
neighbours and then periodically refining them using an exploration algorithm.
Each peer maintains two sets of neighbours - receivers, which are the neighbours
to which it uploads data and senders, which are the neighbours from which data
is downloaded. The transmitter splits the data stream into small data chunks,
which are exchanged between neighbouring peers in an epidemic fashion. Peers
maintain local knowledge about data chunks possessed by their senders and
inform receivers whenever they receive (or generate, in case of the transmitter)
a new data chunk. Whenever a sender of a peer notifies it about a newly received
chunk, the peer requests this new chunk if it has not requested this chunk from
another peer already.

The exploration algorithm is used to adapt the overlay to optimise the video
streaming throughput by maximising the utilisation of available upload band-
width of peers, which we consider the most scarce resource in the system. The
algorithm is executed by each peer independently and its goal is to adapt the
peer’s set of senders to improve the download rate. The algorithm is executed
by a peer periodically in a series of rounds and ensures that:

– A peer has a constant (configurable) number of senders.
– A peer replaces the sender from which it receives the worst download rate

with a new sender provided by the bootstrap component that selects it ran-
domly from all peers in the overlay.

The exploration algorithm adapts the mesh overlay so that (i) the upload
bandwidth of all peers is efficiently utilised, (ii) download rates of nodes are
improved and (iii) network latency between interacting peers is reduced. Upload
bandwidth is utilised by matching a peer’s number of receivers with its available
upload bandwidth. The reason for this is that a peer continues to gain new
receivers when it is underloaded and loses some receivers (i.e., receivers replace
it with less loaded senders) when it is overloaded.

A peer joining the network initially acquires a random set of senders from its
bootstrap component. The exploration algorithm will then continuously attempt
to improve the peer’s download rate by replacing the slowest senders with senders
that can provide higher transfer rates, thereby effectively optimising its set of
senders. This approach also decreases the network latency between neighbouring
peers as a consequence of using TCP to transmit data chunks, and TCP’s built-
in congestion control. The reason for this is that when multiple connections

share an overloaded link, TCP allocates more bandwidth to connections with
lower network round-trip times (RTT) [17]. When a bottleneck occurs at the
sender’s uplink, more upload bandwidth is allocated to receivers with low latency.
Similarly, when a bottleneck occurs at the receiver’s downlink, more download
bandwidth is allocated to senders with low latency. This causes receivers to
replace distant senders (for which TCP allocates less bandwidth) with senders
that are potentially closer.

3.2 Bootstrap

The MeshTV bootstrap component is used by the mesh component to provide
a random sample of peers (potential neighbours) when a peer joins the system
and whenever the exploration algorithm is executed. Bootstrap uses the gossip
component, described below, to periodically obtain a new sample of peers.

3.3 Gossip

The gossip component in MeshTV is based on a peer sampling service [18] in
which peers randomly exchange membership information between themselves.
This results in each peer periodically obtaining a random subset of all peers in
the system, which are then provided to the bootstrap component and are used
to create and refine the mesh overlay.

3.4 Transport

The MeshTV p2p protocol uses TCP for transferring data chunks between peers.
The use of TCP as a transport protocol enables the exploration algorithm to
improve proximity between neighbouring peers as described in section 3.1.

4 MeshTV Evaluation

In this section, we present an initial evaluation of the communication layer of
the MeshTV architecture encompassing the previously highlighted p2p protocol
[16]. This evaluation was carried out in ns-2 [19]. In particular, we show that the
p2p protocol optimises upload bandwidth utilisation, improves throughput and
network proximity between neighbouring peers by using the combination of the
mesh, bootstrap, gossip and transport components.

Ns-2 [19] provides a realistic model of the physical network and the TCP/IP
stack (the MeshTV p2p protocol uses TCP New Reno) at the cost of reduced
scalability limiting the number of nodes that have been simulated to 500. Our
previous experience in evaluating larger overlays in less accurate flow-level simu-
lators lead us to believe that the findings presented here are also valid for larger
overlays [7]. The physical network topology created for simulations is a full mesh
with bandwidth being limited on the access links (uplinks and downlinks). The

node bandwidth distribution has been derived from Gnutella p2p system mea-
surements [20] and nodes have been categorised into 4 groups: A, B, C and D
(see Table 1). Network latencies between nodes are selected uniformly at ran-
dom between 2ms and 300ms. MeshTV parameters used in the experiments are
presented in Table 2. The mesh overlay in the experiments is initially random,
formed by nodes selecting random senders.

Category Downlink Uplink Ratio

A 10 Mbps 5 Mbps 15%

B 3 Mbps 1 Mbps 25%

C 1.5 Mbps 384 Kbps 40%

D 784 Kbps 128 Kbps 20%
Table 1. Node bandwidth distribution

Parameter Value

stream rate 1500 Kbps

number of senders 5

exploration round length 5 sec

chunk size 4 KB

pipelined requests 8

sliding window size 30 sec
Table 2. Protocol parameters

4.1 Upload Utilisation

Figure 2 compares the average upload utilisation of the overlay with and with-
out the adaptation (note the different scales on the y-axes). It shows that when
the exploration algorithm is used, a node’s upload reaches its maximum up-
load capacity as shown in Table 1. This means that nodes in all categories fully
utilise their upload bandwidth. In contrast, when the exploration is not used,
the upload bandwidth of nodes in the highest categories A and B is greatly un-
derutilised. It can be observed from these figures and the given node bandwidth
distribution that the total aggregated upload for adapted and not adapted over-
lays is about 550 Mbps and 260 Mbps respectively. This means that the upload
bandwidth utilisation is improved by over 100% when the overlay is adapted by
the exploration algorithm.

4.2 Throughput

The improved utilisation of the upload bandwidth results in nodes increasing
their data throughput. Figure 3 compares the data rates with and without the

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000

av
er

ag
e

up
lo

ad
 r

at
e

(k
bp

s)

time (sec)

Node category A
Node category B
Node category C
Node category D

(a) Average upload rates with the exploration algo-
rithm

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000

av
er

ag
e

up
lo

ad
 r

at
e

(k
bp

s)

time (sec)

Node category A
Node category B
Node category C
Node category D

(b) Average upload rates without the exploration al-
gorithm

Fig. 2. Optimising average upload rates.

exploration algorithm (note again the different scales on the y-axes). It shows
that the data rates received in the adapted overlay are all much higher than in
the case of a random mesh overlay. However, not only the upload bandwidth of
senders, but also a node’s own download capacity limits the received data rate.
So, for instance, the download rate of nodes in category D is limited by their
download bandwidth of 784 Kbps. Other node categories have higher download
capacity and thus achieve higher download rates. MeshTV accommodates lim-
ited download bandwidth of some nodes and different data rates received by
different node categories through the use of the Multiple Description Coding
(MDC) technique and specifically MDC-FEC [21]. The MDC technique enables
the original video stream to be split into a number of descriptions. A node can
download any subset of all descriptions to recreate the video stream.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000

av
er

ag
e

do
w

nl
oa

d
ra

te
 (

kb
ps

)

time (sec)

Node category A
Node category B
Node category C
Node category D

(a) Average throughput with the exploration algorithm

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000

av
er

ag
e

do
w

nl
oa

d
ra

te
 (

kb
ps

)

time (sec)

Node category A
Node category B
Node category C
Node category D

(b) Average throughput without the exploration algo-
rithm

Fig. 3. Improving the average throughput.

4.3 Node Proximity

Figure 4 shows how the exploration algorithm reduces the network latency be-
tween interacting nodes. Initially, the random mesh overlay has an average la-
tency between neighbouring nodes roughly equal to 151ms as the latencies are
assigned randomly between 2ms and 300ms. Since senders allocate more upload
bandwidth to closer receivers, the overlay adapts, resulting in a reduction of the
average latency to about 75ms, which is a 50% improvement. The exploration
algorithm does not further reduce the distances between neighbouring nodes as
this might degrade the data throughput. Connecting exclusively to the nearest
senders implies two undesired effects. Nodes that share low-latency links with
many other nodes might be overloaded and the overlay might be divided into
disconnected clusters of nearby nodes. The exploration algorithm prevents these

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0 200 400 600 800 1000

av
er

ag
e

la
te

nc
y

(m
s)

time (sec)

Fig. 4. Improving proximity of neighbours.

unwanted effects as it improves proximity only when this does not degrade the
data throughput. This is because a high-latency underloaded node will provide
higher data throughput than a low-latency overloaded node and thus will be
preferred as a sender.

5 Related Work

As would be expected from a number of research project solutions in the do-
main of p2p live streaming (such as Bullet [2], Splitstream [1], Chainsaw [3],
Coolstreaming [6] and MeshCast [7]) these solutions has focussed on the chal-
lenging distributed system problems of achieving low latency and robustness in
such a dynamic environment and not been on the management of streams or the
generation of revenue.

Most of these systems are mesh based with the exception of Splitstream which
uses a tree and Bullet which uses a hybrid approach of a tree for dissemination
of the stream and a mesh for retransmission of lost or dropped packets.

A number of the systems use a form of gossip in the construction of their un-
derlying topologies. For example, Bullet executes the RanSub algorithm [22] to
deliver a uniform random subset of peers to each peer in the system. Coolstream-
ing also uses a gossip protocol to achieve membership management. MeshCast
on the other hand uses a variant of the Newscast algorithm [12] to distribute a
sampling of the peers in the system. The use of bootstrapping is not stressed in
any of the descriptions of these systems though it is typically needed to enable
the correct functioning of each system in the presence of new peers joining and
existing peers departing.

Finally, a number of these systems attempt to model the communication
capability of a neighbouring peer so that the overall system can better utilise
the bandwidth (typically upload bandwidth) at all nodes. Bullet builds on top
of TCP Friendly Rate Control [23] (with each peer periodically evaluating its

senders and receivers and dropping or replacing them if they do not provide
sufficient bandwidth to that peer. In coolstreaming, a peer estimates the per-
formance of its neighbours to guide the scheduling of requests for parts of the
stream. MeshCast also attempts to estimate its neighbouring peers upload ca-
pacity using its sender/receiver balancing algorithm.

6 Conclusions/Future Work

This paper described the MeshTV architecture which incorporates a set of ab-
stractions that are common to a number of existing live streaming systems.
This layered architecture divides these abstractions into three categories which
have been labelled coordination, management and communication. A realisation
of this architecture incorporating an existing p2p protocol was implemented in
ns2.

Work is currently ongoing to provide an implementation of the MeshTV
architecture (outside of the ns2 simulator) that incorporates one or more existing
live streaming systems. On completion, this will enable a further evaluation of our
architecture including the performance advantages and impact of using different
higher layer components such as the statistics managment component. It will
also be possible to investigate the performance impact on a set of peers that are
executing two or more live streaming systems (e.g., as part of a wireless access
point based home entertainment system hub).

7 Acknowledgements

This work was partly funded by the “Information Society Technology” Pro-
gramme of the Commission of the European Union under research contract IST-
507953 (DBE) and by Enterprise Ireland under the Commercialisation Proof of
Concept Programme (MeshTV).

References

1. Castro, M., Drushel, P., Kermarrec, A., Nandi, A., Rowstron, A., Singh, A.: “Split-
stream: High-Bandwidth Multicast in Cooperative Environments.”. In: SOSP.
(2003)

2. Kostic, D., Rodriguez, A., Albrecht, J., Vahdat, A.: “Bullet: high bandwidth data
dissemination using an overlay mesh.”. In: “Symposium on Operating System
Principles.”. (2003)

3. Pai, V.S., Kumar, K., Tamilmani, K., Sambamurthy, V.: “Chainsaw: Eliminating
trees from overlay multicast.”. In: IPTPS. (2005) 127–140

4. Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek, M.F., O’Toole, J.: “Overcast:
Reliable multicasting with an overlay network.”. In: OSDI. (2000)

5. Castro, M., Drushel, P., Kermarrec, A., Rowstron, A.: “SCRIBE: A large-scale
decentralised application level multicast infrastructure.”. IEEE JSAC (2002) 1–9

6. Zhang, X., Liu, J., Li, B., Yum, T.S.P.: Coolstreaming/donet: A data-driven over-
lay network for peer-to-peer live media streaming (2005)

7. Biskupski, B., Cunningham, R., Dowling, J., Meier, R.: High-bandwidth mesh-
based overlay multicast in heterogeneous environments. In: AAA-IDEA ’06: Pro-
ceedings of the 2nd international workshop on Advanced architectures and algo-
rithms for internet delivery and applications, New York, NY, USA, ACM (2006)
4

8. Hiclanan, K., Elgamal, T.: The SSL protocol. Internet draft, Netscape Communi-
cations Corp. Technical report (1995)

9. Kohl, J.T., Neuman, B.C.: The Kerberos network authentication service (V5).
Technical Report 1510 (1993)

10. Jelasity, M., Babaoglu, O.: “T-man: Gossip-based overlay topology manage-
ment.”. In: 3rd International Workshop on Engineering Self-Organising Appli-
cations. (2005)

11. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: “load balancing in
structured p2p systems”. In: 2nd International Workshop on Peer-to-Peer Systems.
(2003)

12. Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet. Tech-
nical Report IR-503, Department of Computer Science Vrije Universiteit, Amster-
dam, The Netherlands (2002)

13. Jelasity, M., Montresor, A.: “Epidemic-style proactive aggregation in large overlay
networks.”. In: Proceedings of the 24th International Conference on Distributed
Computing Systems. (2004) 102–109

14. Jelasity, M., Montresor, A., Babaoglu, O.: “robust aggregation protocols for large-
scale overlay networks.”. In: International Conference on Dependable Systems and
Networks. (2004) 19–28

15. Kempe, D., Dobra, A., Gehrke, J.: “Gossip-based computation of aggregate infor-
mation”. In: 44th IEEE Symposium on Foundations of Computer Science. (2003)
482–491

16. Biskupski, B., Cunningham, R., Meier, R.: Improving throughput and node prox-
imity of p2p live video streaming through overlay adaptation. In: Proceedings of
the 9th IEEE International Symposium on Multimedia (ISM 2007), Los Alamitos,
CA, USA, IEEE Computer Society (2007) 245–252

17. Lakshman, T.V., Madhow, U.: The performance of TCP/IP for networks with
high bandwidth-delay products and random loss. IEEE/ACM Trans. Netw. 5(3)
(1997) 336–350

18. Jelasity, M., Guerraoui, R., Kermarrec, A.M., van Steen, M.: The peer sampling
service: experimental evaluation of unstructured gossip-based implementations. In:
Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX international confer-
ence on Middleware, New York, NY, USA, Springer-Verlag New York, Inc. (2004)
79–98

19. McCanne, S., Floyd, S.: ns—Network Simulator. http://www.isi.edu/nsnam/ns
20. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer

file sharing systems. In: Proceedings of Multimedia Computing and Networking.
(2002)

21. Goyal, V.K.: Multiple description coding: Compression meets the network. IEEE
Signal Processing Magazine 18(5) (September 2001) 74–93

22. Kostic, D., Rodriguez, A., Albrecht, J., Bhirud, A., Vahdat, A.: Using random sub-
sets to build scalable network services. In: Proceedings of 4th USENIX Symposium
on Internet Technologies and Systems (USITS). (2003)

23. Floyd, S., Handley, M., Padhye, J., Widmer, J.: Equation-based congestion control
for unicast applications. In: SIGCOMM 2000, Stockholm, Sweden (August 2000)
43–56

