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ABSTRACT
In this paper we present MeshCast, a peer-to-peer (p2p)
multicast protocol for applications requiring high bandwidth
(such as live video streaming) from a server to a large num-
ber of receivers. Traditional tree-based approaches to over-
lay multicast inefficiently utilise the outgoing bandwidth of
participating nodes and poorly adapt to node membership
churn. In contrast, MeshCast is based on Chainsaw mesh-
based approach to data delivery that better utilises band-
width and provides excellent adaptation properties. In this
paper we identify properties that enable mesh-based over-
lay multicast protocols to better utilise the available band-
width and consequently support higher data stream rates in
heterogeneous environments. MeshCast uses a gossip-based
algorithm to adapt the overlay to peer heterogeneity, while
still preserving the advantages of a mesh-based overlay. Our
experiments show that MeshCast can support 68% higher
stream rates and provides a 22% improvement in buffering
delay over the recently proposed Chainsaw protocol for a
heterogeneous node bandwidth distribution.1
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1. INTRODUCTION
There has been a growing interest in peer-to-peer multi-

cast for large, both in scale and volume, content delivery
due mainly to the lack of widespread support for IP mul-
ticast and the high cost of infrastructure-based approaches
using dedicated/replicated servers. Peer-to-peer multicast
is attractive in this setting because the bandwidth available
to serve content scales with demand (i.e., the self-scaling
property). Therefore, a grand challenge for p2p multicast
protocols is to efficiently utilise the available bandwidth of
participating nodes.

A common approach to p2p multicast is to organise nodes
into a tree-structured overlay with a root at the source node
[4]. The tree structure defines the routing decisions – a node
receives data from its parent and forwards it to all its chil-
dren. This approach, however, has a number of problems.
Firstly, it does not utilise the outgoing bandwidth of a large
fraction of nodes that are leaves in the tree. Secondly, the
received bandwidth is limited by the minimum bandwidth
on the path to the source and any loss in the upper level
of the tree reduces bandwidth available to nodes lower in
the tree. Finally, it has poor resilience to churn (a node
departure results in the data stream being lost at all its de-
scendants until the tree is fixed). Multiple tree approaches
[3] aim at solving the first two problems, but do not solve
the third problem as they require more tree structures to be
maintained.

Recently many researchers have switched focus to build
multicast protocols using overlay meshes to overcome the
aforementioned problems (e.g., [5, 7, 10] outlined in Section
5). The approach of these systems is that the nodes or-
ganise into an overlay mesh by selecting multiple nodes as
neighbours to exchange data with. In order to enable data
exchange between neighbours, the disseminated data is split
into smaller data blocks or chunks. Each time a node re-
ceives a data block, it informs its neighbours and they can
request this missing block. This improves resiliency to churn
and enables the bandwidth of all nodes to be utilised. With
a sufficient number of neighbours, the failure of a node goes
unnoticed in the system because neighbouring nodes can
choose to download data from other neighbours. The con-
tributions of this paper are:

• we identify properties that enable mesh-based overlay
multicast protocols to better utilise the available band-
width of nodes in a heterogeneous environment

• we propose to apply a simple topology adaption al-
gorithm to mesh-based multicast streaming to enable



the efficient utilisation of the available bandwidth and
evaluate this resulting protocol

In Section 2, we introduce the general problem of mesh-
based overlay multicast on the example of the Chainsaw pro-
tocol [10] and highlight issues that arise in heterogeneous en-
vironments. Section 3 describes our protocol that addresses
these issues. In Section 4, we present experimental results.
Section 5 outlines recent related work. In Section 6, we out-
line some future work and conclude the paper.

2. P2P MULTICAST IN HETEROGENEOUS
ENVIRONMENTS

In this paper we consider a cooperative mesh-based over-
lay multicast in which a single data stream is generated
“live” at a source node and is disseminated to all nodes. The
bandwidth distribution of nodes is considered to be hetero-
geneous with nodes having the incoming bandwidth larger,
equal or lower than their outgoing bandwidth. Nodes con-
tribute their outgoing bandwidth irrespective of how much
bandwidth they receive, however, support for fairness over
multiple multicast sessions can be added through a credit-
based reputation system (e.g., [9]). We are interested in
designing a protocol that maximises the stream rate that all
nodes receive. In order to do this, the system needs to sat-
isfy two conditions – maximise the node outgoing bandwidth
utilisation and deliver the same data rate to all nodes. The
theoretical upper bound on this data stream rate is given

by the formula
PN

i=1 outbwi

N−1
, where outbwi is the node i out-

going bandwidth and N is the total number of nodes in the
system (the source node contributes its outgoing bandwidth,
but does not consume any). This is under an assumption
that all participating nodes incoming bandwidth is not lower
than this stream rate (which is usually accomplished due to
the popularity of asymmetric Internet connections with high
download capacity). Our goal is to approach this theoretical
limit.

In contrast to mesh-based file-sharing systems such as Bit-
Torrent [5], the entire file is not available to live streaming
protocols and thus it cannot be split into blocks for distri-
bution throughout the network. In order to leverage mesh-
based delivery, streaming protocols require that there is a
delay between the stream creation time at the source node
and the receiver playback time. The data stream produced
within this delay is split into small blocks and distributed
throughout the network similarly to how entire file blocks
are distributed in mesh-based file-sharing protocols. In the
Chainsaw protocol nodes maintain sliding buffers (called
windows of interest) that reflect this delay and define which
blocks have been already received and which are still miss-
ing. The buffers move forward with the speed of the origi-
nal video rate that is globally known. The beginning of the
buffer points at the block currently being played at the node
and the end of the buffer is the currently generated block
at the source node. Blocks that do not arrive in time (are
outside the sliding buffer) are lost and result in degraded
video quality.

The mesh overlay is created in Chainsaw in a random
fashion by joining nodes connecting with randomly selected
nodes. Neighbouring nodes maintain local knowledge about
blocks they possess by informing each other whenever they
receive a new block. Nodes request missing blocks from

neighbours applying some block selection strategy. In Chain-
saw, nodes pick blocks at random in order to increase the
disjointness of blocks possessed by neighbouring nodes. The
ability to concurrently upload/download data blocks from
many neighbours (called also swarming) is one of the ad-
vantages of mesh-based systems. It enables node incoming
bandwidth to be maximised (i.e., using the outgoing band-
width of many neighbours) and improves resilience to con-
gestion (i.e., if one uploader becomes congested, some traffic
can be easily shifted to another uploader).

The above general scheme for mesh-based multicast, which
is employed by Chainsaw, achieves excellent bandwidth util-
isation (and consequently supports high data stream rates)
in homogeneous environments where all nodes have the same
upload and download capabilities [10]. However, this is not
a realistic scenario as today’s Internet consists of heteroge-
neous hosts having asymmetric upload and download capac-
ities [12]. The following properties should be addressed in
heterogeneous environments to improve bandwidth utilisa-
tion:

• the sender and the receiver of each data transfer should
be bandwidth-matched. The incoming bandwidth al-
located by the receiving node to enable a data transfer
should not be lower than the outgoing bandwidth al-
located by the sending node. Otherwise, a receiver
with insufficient allocated incoming bandwidth would
constrain the sender’s outgoing bandwidth utilisation

• a topology has to guarantee that all nodes are able
to receive data at a desired rate. A randomly formed
topology may result in some nodes having a major-
ity of neighbours with low upload bandwidth and are
thus unable to receive the stream at the desired rate.
Moreover, much of their outgoing bandwidth is unused
since many blocks are not needed by their neighbours
by the time these nodes manage to download them

3. MESHCAST
In this section we present the MeshCast protocol that ex-

hibits the properties covered in the previous section. We
assume that each node estimates its maximum outgoing
(outbw) and incoming (inbw) bandwidth (e.g., using band-
width estimation tools such as [13]). Each node in Mesh-
Cast maintains two sets of neighbours – receivers, which are
the neighbours that it can potentially upload data to and
senders, which are the neighbours that it can potentially
download data from. Naturally, one node has another node
in its receivers set precisely when the latter has the former in
its senders set. Whenever a node receives a new data block,
it informs all its receivers. Nodes request missing blocks in a
random order from their senders (i.e., use the random block
selection strategy).

MeshCast adaptability to bandwidth heterogeneity is based
on an observation that all nodes can maximise their outgo-
ing bandwidth utilisation and receive the same aggregated
data rate if the following conditions are satisfied:

1. all nodes have the number of receivers proportional to
their outgoing bandwidth, i.e.,

∀i,j
outbwi

|receiversi|
=

outbwj

|receiversj |



loop
wait( δ time units )
p ← random peer from view
send view ∪ {(myAddress, 0, |senders|)} to p
receive viewp from p
view ← view ∪ viewp

view ← view / {(myAddress, *, *)}
view← select s freshest unique descr. from view
view ← increase each descriptor’s age in view
balanceSenders()

end loop

Algorithm 1: sending thread

and they share the outgoing bandwidth equally among
the receivers

2. all nodes have an equal number of senders, i.e.,

∀i,j |sendersi| = |sendersj |

Therefore, nodes in MeshCast maintain a fixed number of re-
ceivers equal to outbw

α
and upload data to each receiver with

the speed of α (where the value of α expresses the trade-
off between what should be the lowest bandwidth that en-
ables a node to contribute versus the maximum number of
concurrent connections that a high-bandwidth node needs
to support). In order to continuously balance (equalise)
the number of senders at nodes, MeshCast employs an un-
derlying gossip-based topology adaptation algorithm. As a
side effect, the gossip protocol in each gossip round provides
nodes with a fresh random sample of nodes. These are used
for building random sets of receivers and replacing receivers
that leave the overlay (stop requesting blocks) with new ones
in order to keep a fixed number of them.

The algorithm we use for gossiping is based on Newscast
[6]. Nodes maintain partial views that are fixed-size sets of
node descriptors (s is the size of the views). Each descrip-
tor contains the address of a node, age of the descriptor
(increased with each gossip) and a number of senders that
the node had when the descriptor was created. Periodically
(every δ time units), each node generates a fresh descriptor
(with the age set to zero and its updated number of senders),
adds it to its view and exchanges the view with a randomly
selected neighbour (see Algorithms 1 and 2 for the sending
and receiving threads). After the view is exchanged, a gos-
siping node selects s freshest unique descriptors (with mini-
mal age values) that do not represent itself for the new view,
increases each descriptor’s age and initiates the senders bal-
ancing algorithm. The presented gossiping algorithm has a
number of nice properties such as self-healing (descriptors
of nodes that leave the system are eventually removed from
partial views), resilience even to catastrophic failures (where
a high proportion of nodes fail at the same time) and low
communication overhead [6].

The random samples of nodes produced by gossiping are
used for balancing the number of senders among all nodes
(see Algorithm 3). A node running the balancing algorithm
compares its own number of senders to the number of senders
stored in each of the descriptors to find a neighbour with
maximally different number of senders. It requests the se-
lected neighbour to transfer its updated number of senders
(as it might have changed since the time the descriptor was
produced) and equalises the number of senders for both

loop
receive viewp from p
send view ∪ {(myAddress, 0, |senders|)} to p
view ← view ∪ viewp

view ← view / {(myAddress, *, *)}
view← select s freshest unique descr. from view
view ← increase each descriptor’s age in view
balanceSenders()

end loop

Algorithm 2: receiving thread

p ← peer with most different number of senders
//p is not a source node
k ← request the p’s number of senders
toTransfer ← x | k - |senders| | / 2y

if (k > |senders|) then
request toTransfer senders from p
//also request each of these senders
//to replace receiver p with this node

else
transfer toTransfer senders to p
//also request each of these senders
//to replace this receiver with node p

end if

Algorithm 3: balanceSenders()

nodes by transferring some senders to or from the neigh-
bour. The transferred sender nodes are informed that their
sets of receivers have changed.

4. EVALUATION

4.1 Simulation Details
We developed a discrete-time simulator for both Mesh-

Cast and Chainsaw [10] evaluations. Our simulator is able to
model heterogeneous networks with different node downlink
and uplink bandwidths. The simulator uses the bandwidth
settings to appropriately calculate the amount of data that
can be transfered between nodes in each simulation step.
This requires that for each data transfer the simulator takes
into account the number of flows concurrently sharing the
uplink and downlink at either end. Since providing a real-
istic model of the network can be prohibitively expensive in
terms of simulation, we decided to introduce some simplifica-
tions. Similarly to [1] we assume that one uplink or downlink
is shared by all flows equally and bottlenecks appear either
at the uplink of the sending node or downlink of the receiv-
ing node (i.e., the Internet core has a sufficient bandwidth
capacity). These simplifications improve the scalability of
our simulator and enable us to model mesh-based multicast
streaming for 10000 nodes.

In our evaluation we use a node bandwidth distribution
derived from the Gnutella p2p system measurements [12]
(see Table 1). Similarly to [1], we discretise the CDFs pre-
sented in [12], excluding the tail of the distribution. Most of
the excluded nodes have download bandwidth not sufficient
for receiving the data stream. The source node has been set
to belong to the first category with 5 Mbps uplink. The pro-
tocol parameters used in the experiments (unless specified
otherwise) are presented in Table 2. In the experiments we
ignore node membership churn and assume that all nodes



Downlink Uplink Ratio

10 Mbps 5 Mbps 20%
3 Mbps 1 Mbps 30%

1.5 Mbps 384 Kbps 50%

Table 1: Node bandwidth distribution

Parameter Value

Number of nodes 10000
Streaming duration 1000 sec

Block size 16 KB
α 128 Kbps

Gossip view size (s) 30
Gossip interval (δ) 2 sec

Avg. neighbourhood size in Chainsaw 20

Table 2: Protocol parameters

join at the beginning of the experiments and stay until the
end (with the exception of the experiments in Section 4.4).
In experiments with Chainsaw we assume that the initial
topology is random with some average node neighbourhood
size.

4.2 Maximum Stream Rate
In Section 2 we showed a formula for the theoretical upper

bound on the stream rate to each node in any multicast pro-
tocol. For our considered node bandwidth distribution this
limit reaches 1523 Kbps. Notice, that the incoming band-
width of all nodes is large enough to support this rate. In
Figure 1(a) we compare the average download bandwidth
achieved by nodes in Chainsaw and MeshCast protocols as
a function of the stream rate. Clearly, the node download
rate is limited by the stream rate as it is not possible to
receive data faster than it is produced. In the next subsec-
tion we show that all nodes in MeshCast receive data at the
same rate. Figure 1(b) compares the outgoing bandwidth
utilisation that is defined as the ratio of the total amount
of data uploaded to the total available upload in the sys-
tem. The results show that MeshCast can support 1509
Kbps stream rates, which is 99% of the theoretical maxi-
mum, outperforming Chainsaw that supports data streams
at the maximum 899 Kbps rate in the same settings. This
is a 68% improvement in the system throughput after the
topology adaptations performed by MeshCast.

4.3 Minimum Buffering Delay
Mesh-based streaming protocols require a buffering delay

since nodes download data blocks in non-sequential order,
while the video playback requires sequential data ordering.
We define a minimum buffering delay as the minimum length
of the buffer in seconds required to avoid any data loss. A re-
ceiving node’s progress is defined as the source creation time
of the latest block of contiguous data downloaded (or pro-
duced in the case of the source node) by this node (see Fig-
ure 2). Thus, the maximum difference between the node’s
progress and the source’s progress represents the minimum
buffering delay.

In Figure 3 we show the average progress of nodes for dif-
ferent streaming rates compared to the source node progress.
It can be seen that the minimum tolerable buffering delay
of an average node for the highest considered stream rate
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Figure 1: Maximum stream rates for Chainsaw and
MeshCast protocols

Figure 2: Buffer and progress of a node

(1408 Kbps) is 10 seconds (i.e., the difference between the
source’s progress and the earliest possible playback time).
In order to show that the variance of the progress between
nodes is small and that all nodes receive data at the desired
rate, we show the earliest playback time for the worst node
in the system (it is only 2 seconds behind the average node
for the 1408 Kbps stream rate).

Figure 4 compares the average and the worst node’s buffer-
ing delay in MeshCast and Chainsaw protocols for the 768
Kbps stream rate, which is a rate still supported by Chain-
saw. The results show that MeshCast exhibits 22% shorter
average buffering delay than Chainsaw and additionally the
variance between nodes is smaller (only 1.3 seconds differ-
ence between the average and the worst node).

4.4 Topology Adaptation
Figure 5 investigates the performance of the senders bal-

ancing algorithm for an initial uniformly random topology.
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lay for the 768 Kbps data rate (rate still supported
by Chainsaw)

It shows the number of gossip rounds required to reach the
balanced (equal) number of senders by all nodes, 99% of
nodes and 95% of nodes as a function of the total number
of nodes in the system (increasing exponentially). It can
be seen that while the optimal adaptation is a logarithmic
function of the total number of nodes, the almost optimal
adaptation is constant and is reached in 19 gossip rounds by
99% of all nodes.

We investigated the impact of a catastrophic failure, where
suddenly 50% of nodes fail in the 700th second, on the av-
erage node progress for the 1408 Kbps stream rate. It can
be seen from Figure 6 that the topology managed to recon-
struct itself and nodes came back to the normal progress
within 12 seconds. The buffering delay required to absorb
the catastrophic failure, such that playback is not disturbed,
should be 7 seconds longer.

4.5 Protocol Overhead
In order to calculate the protocol communication over-

head, notice that for each received block a node sends outbw
α

control packets to inform all its receivers. An additional one
control packet per non-source node is required to request
each block from a sender. Thus, in a network with N nodes,

each block generates (
PN

i=1 outbwi

α
) + N − 1 control packets,

which for the particular node bandwidth distribution and
protocol parameters from Table 2 is approximately equal to
13 ∗N . In contrast, the Chainsaw overhead depends on its
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neighbourhood size (20 used in our experiments) and ap-
proximately equals to 21 ∗N . A nice property of MeshCast
is that the communication overhead incurred on a node is
proportional to its bandwidth capacity. We believe that this
communication overhead is acceptable compared to the to-
tal data being transmitted, considering that the application
domain is high-bandwidth streaming.

MeshCast incurs also communication overhead caused by
the gossip-based senders balancing algorithm. The gossip
algorithm requires on average two packets sent for exchang-
ing the view per one gossip interval [6] (one packet sent by
the sending thread and one by the receiving thread). Fig-
ure 7 presents the communication overhead of the senders
balancing algorithm as a function of the number of nodes
(exponentially increasing). It shows the average number of
packets sent in total by each node in order to equalise the
number of senders at all nodes, 99% of nodes and 95% of
nodes. The presented overhead includes packets used to re-
quest the current number of senders from neighbours as well
as packets used to transfer senders and notify these senders
about the change in their receivers sets. The overhead of
both the gossip and the balancing algorithm is small, espe-
cially compared to the high data stream rates.
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5. RELATED WORK
SplitStream [3] is a multiple tree based multicast proto-

col based on top of the Scribe [4] single tree-based system,
which is in turn built on top of a Distributed Hash Table
(DHT). In SplitStream, the original data stream is divided
into several substreams, each having an individual distribu-
tion tree. In an effort to utilise outgoing bandwidth of all
nodes, trees are built such that each node is an interior node
in exactly one tree. However, SplitStream has poor adap-
tation to node failures compared to mesh-based protocols.
Moreover, it has been shown that multicast protocols built
on DHTs suffer from a mismatch between the DHT iden-
tifier space and the node outgoing bandwidth, resulting in
limited system throughput [2].

Bullet [8] splits the stream into blocks and uses a single
tree on top of a mesh. Nodes receive a subset of blocks
from their parents in the tree, while the remaining blocks
are recovered from nodes in the mesh overlay. This has
been shown to improve bandwidth utilisation compared to
single tree approaches. Authors also noticed the need for
adaptation to node bandwidth. Thus, nodes in the tree
compute the best rate to send data to each of their chil-
dren, while nodes in the mesh overlay connect to the most
useful neighbours. However, Bullet wastes bandwidth on re-
ceiving duplicate packets and its reliability to node failures
is lower than in pure mesh-based protocols because of the
requirement of maintaining the tree structure.

BitTorrent [5] is a file-sharing protocol. It uses an opti-
mistic unchoking mechanism that explores potential neigh-
bours in order to match nodes with similar bandwidth and
disjoint data and consequently better utilise their band-
width. The optimistic unchoking exploration, however, re-
quires uploading to suboptimal nodes and wastes outgoing
bandwidth. Bharambe et al. [1] suggested matching nodes
based on their bandwidth when they join the overlay. This,
however, results in a set of completely disjoint bandwidth
matched clusters of nodes forming. Thus, only a fraction
of a node’s neighbourhood can be matched and the rest
have to keep the network connected. In contrast, MeshCast
avoids network clustering by remaining a random topology
influenced by only the node fan-out. Finally, optimistic un-
choking works relatively well in file-sharing protocols, but is
not suitable for live multicast streaming protocols. This is
because streaming requires short buffers that results in two

nodes having a few unique blocks at a time and consequently
frequent switching between neighbours.

MeshCast is similar in its approach to Bullet’ [7] in that
it splits neighbours into senders and receivers as well as
adapts the number of concurrent uploads and downloads to
the available bandwidth. However, Bullet’ is a file-sharing
protocol rather than a multicast streaming protocol and,
similarly to BitTorrent, benefits from long lasting connec-
tions between nodes. Thus, nodes explore potential senders
and receivers to select the best performing ones.

Finally, in Sec. 2 we presented the related Chainsaw pro-
tocol [10] that MeshCast extends.

6. CONCLUSIONS AND FUTURE WORK
In this paper we identified properties that improve band-

width utilisation in heterogeneous environments and con-
sequently enable support for higher data stream rates. We
presented MeshCast that uses a gossip-based overlay adapta-
tion to take advantage of node heterogeneity. We evaluated
the protocol using a custom built simulator in an exam-
ple environment derived from a particular node bandwidth
distribution. The simulation results show that our protocol
supports stream rates 68% higher than Chainsaw and within
99% of the theoretical upper bound, provides a 22% im-
provement in buffering time over Chainsaw and self-adapts
the topology even in the case of catastrophic failures.

In the future, we are planning to implement MeshCast in
the Mace/MACEDON framework [11] and to deploy it in a
wide-area network emulator such as ModelNet [14] to better
model network dynamics and to compare it to other existing
protocols (e.g., SplitStream and Bullet). We are also inves-
tigating methods to further reduce the required buffering
delay through the topology adaptation and improved block
selection strategies.
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